[PDF] Distributions de plusieurs variables





Previous PDF Next PDF



Distributions de plusieurs variables

8 mai 2008 Comment trouver les distributions marginales de X et de Y `a partir de la distribution conjointe de ... est la distribution marginale de Y .



Chapitre III. Observation dun couple de variables

distribution marginale de X (appelée aussi distribution de X) et la De même on peut calculer l'effectif marginal de la modalité m.



TD n°2 : Distribution conjointes marginales et conditionnelles

Calculer les distributions marginales en fréquences. Distribution marginale de X = BAC. Bac. A. B. CDE. Autres. Total.



Cours 2 Distribution conjointe

Dans le tableau de contingence de la distribution conjointe les modalités de X distribution marginale de X revient à calculer leur effectif n1. et n2.; ...



Section: Sciences Economiques Semestre 1 Statistique Descriptive

Considérons la distribution marginale de X pour calculer X?. Var(X) et ? (X). • Le nombre moyen d'enfants à charge par salarié est. • La variance marginale 



Statistique descriptive bivariée Distributions jointe marginales

Distribution jointe distributions marginales Calcul des moyennes et variances



Cours 5 Indépendance

4 Égalité des conditionnelles et de la marginale : si les distributions conditionnelles de X en fréquence sont égales alors elles sont égales à la distribution 



Statistique 1) Calculer les effectifs marginaux manquants. 2

10) Calculer la distribution conditionnelle de la variable machine sachant que les 2) Déterminer la distribution marginale de la variable « fumeur ».



Table des matières 1 Introduction

Dans le cas d'une variable quantitative on pourra faire des calculs d'indicateurs appelle distribution marginale du nombre de pièces.



TD n°1 : Distributions conjointes marginales et conditionnelles.

marginales et conditionnelles. Donner la distribution de la variable service : ... Calculer les distributions marginales en fréquence.



[PDF] Distributions de plusieurs variables

8 mai 2008 · Comment trouver les distributions marginales de X et de Y `a partir de la distribution conjointe de (X Y )? Cas discret P(X = x) = ? y P(X = 



[PDF] Statistique descriptive

A partir de la distribution conjointe des deux caractères X et Y on peut déduire les distributions marginales: – Distribution marginale de X



[PDF] Chapitre III Observation dun couple de variables

A partir de la distribution (conjointe) de X et Y on peut en déduire la distribution marginale de X (appelée aussi distribution de X) et la distribution 



[PDF] 1/Distributions conjointes marginales et conditionnelles A

la distribution marginale des observations selon la modalité quelle que soit la modalité de Cette distribution est représentée par la dernière colonne 



[PDF] Les distributions statistiques à deux caractères : étude de - UMMTO

Distribution marginale de Y: nombre Moins de 2 [2-5[ 5 et plus Total d'enfants enfants La distribution conditionnelle correspondant à une modalité x de 



[PDF] Statistique descriptive bivariée Distributions jointe marginales

Distribution jointe distributions marginales Calcul des moyennes et variances marginales et conditionnelles Test de corrélation Modèle de régression



[PDF] Table des matières 1 Introduction

Dans le cas d'une variable quantitative on pourra faire des calculs d'indicateurs appelle distribution marginale du nombre de pièces



[PDF] Distributions à deux caractères - Mathématiques du Cnam

Ranger ces données en classe d'amplitude 5 dans un tableau de contingence Dégager les distributions marginales et calculer l'âge moyen des époux au moment des 



[PDF] Chapitre 2 : Variables aléatoires et distributions

2 4 1 Distribution marginale Soit deux v a X et Y discrètes ou continues et leur fonction de répartition conjointe La fonction de



  • Comment calculer la distribution marginal ?

    Comment trouver les distributions marginales de X et de Y `a partir de la distribution conjointe de (X, Y )? P(X = x,Y = y) est la distribution marginale de X. est la distribution marginale de X. est la distribution marginale de Y .8 mai 2008
  • Comment calculer la moyenne marginale ?

    La moyenne marginale est égale à la moyenne de la moyenne conditionnelle pondérée par les effectifs marginaux.
  • Comment calculer la distribution d'une variable ?

    Elle est calculée sur chaque ligne d'un tableau de fréquence en ajoutant à chaque fréquence la somme des fréquences sur les lignes qui préc?nt. La dernière valeur sera toujours égale au total des observations, puisque toutes les fréquences auront déjà été ajoutées au total précédent.
  • Si chaque fréquence conjointe est égale au produit des deux fréquences marginales correspondantes, il y a indépendance. Typiquement, cela se produit si les deux variables étudiées n'ont rien à voir : fij = fi. × f.

Distributions de plusieurs

variables

Mathematiques Generales B

Universite de Geneve

Sylvain Sardy

8 mai 2008

1

1. Distributions conjointes

Comment generaliser les fonctions de probabilite et de densite a plus d'une variable aleatoire?

Variables aleatoires discretes:

Considerons 2 variables discretes :X=utilite des mathematiques etY= branche d'etude.XnYPharma SdlT Bio ChimieTotal

Math15 2 16 831

Math219 4 24 1259

Math32 2 6 414

Total26 8 46 24104

Tableau de contingence (2007)Distributions

2

XnYPharma SdlT Bio ChimieTotal

Math10.05 0.02 0.15 0.080.30

Math20.18 0.04 0.23 0.120.57

Math30.02 0.02 0.06 0.040.13

Total0.25 0.08 0.44 0.231

Tableau de probabilite

La probabilite conjointe est simplement donnee par un tableau de probabilites, ou

P(X = i;Y = j) = pijpour tout(i;j)

pour deux variables. Pour trois variables, il faut denir : P(X = i;Y = j;Z = k) = pijkpour tout(i;j;k):Distributions 3 Variables aleatoires continues: deux variables aleatoiresX=taille etY= poids ont unefonction de densite conjointesi

P((X;Y)2A) =Z Z

A f(x;y) dx dy; ouf(x;y)>0etR Rf(x;y)dx dy= 1.

Exemple :

f(x;y) =exp(y)0 < x < y <1 0 sinon

Est-ce bien une fonction de densite?

Exemple : Distribution uniforme bivariee sur un carre, un disque, ...Distributions 4y x f(x,y)Fonction de densite a deux variables.

Distributions

5 Il est aussi possible de denir unefonction de repartition conjointe

F(x;y) = P(X6x;Y6y)

pour deux variables. Il est facile de generaliser an>2variables. La fonction de densite conjointe s'obtient de la fonction de repartition en dierenciant@2F@x@y =f pourn= 2.Distributions 6 Exemple : On tire deux boules sans remise d'une urne qui contient 8 Rouge,

6 Bleue et 4 Verte. SoitX=le nombre de boules Rouge etY=le nombre de

boules Bleue. Trouver la distribution conjointe deXetY.

XnY0 1 2

06 153
24153
15153
132
153
48153
0228
153
0

0 Distributions

7 Exemple : Soit deux variables aleatoiresXetYde densitef(x;y) =c(x+y) sur[0;1][0;1]. (1) Que vautc? (2) Que vautP(X<1=2)? (etP(X61=2)?) (3) Que vautP(X + Y<1)? (1) (2)P(X<1=2) = P(X<1=2;Y2[0;1]) =R1=2 0R 1

0(x + y) dy dx =

(3)P(X + Y<1) = P(X<1Y;Y2[0;1]) =R1 0R 1y

0(x + y) dx dy =Distributions

8

2. Distributions marginales

Comment trouver lesdistributions marginalesdeXet deYa partir de la distribution conjointe de(X;Y)?

Cas discret

P(X = x) =

X yP(X = x;Y = y) est la distribution marginale deX.

P(Y = y) =

X xP(X = x;Y = y) est la distribution marginale deY.Distributions 9

Exemple :XnYPharma SdlT Bio ChimieP(X = x)

Math10.05 0.02 0.15 0.080.30

Math20.18 0.04 0.23 0.120.57

Math30.02 0.02 0.06 0.040.13

P(Y = y)0.25 0.08 0.44 0.231

Tableau de probabiliteDistributions

10

Exemple :

XnY0 1 2P(X = x)

06 153
24153

1515345

153
132
153
48153
080
153
228
153
0 0 :::

P(Y = y):::

72153

Distributions

11

Cas continu

f

X(x) =Z

f(x;y)dy est la distribution marginale deX. f

Y(y) =Z

f(x;y)dx est la distribution marginale deY. Cela denit-il bien des fonctions de densite?Distributions 12

Exemple :

f(x;y) =exp(y)0 < x < y <1 0 sinon

On trouve :

f

X(x)= Z

f(x;y)dy=Z 1 x exp(y)dy= exp(x) f

Y(y)= Distributions

130246810

0.0 0.2 0.4 0.6 0.8 1.0 x f(x)

Densité marginale X

0246810

0.0 0.1 0.2 0.3 y f(y) Densité marginale YFonctions de densite marginale.

Distributions

14

3. Independance

Denition

Deux v.a.XetYsontindependantessi pour tout ensembleAetBon a

P(X2A;Y2B) = P(X2A)P(Y2B):

On peut demontrer que cette denition est equivalente a :

Cas disc ret:

P(X = x;Y = y) = P(X = x)P(Y = y)

Cas c ontinu:

f (X;Y)(x;y) =fX(x)fY(y) pour toutx;y.Distributions 15

Exemple :

XnY0 1 2P(X = x)

06 153
24153

1515345

153
132
153
48153
080
153
228
153
0 0 28

153P(Y = y):::

72153

Puisque

P(X = 2;Y = 2)6= P(X = 2)P(Y = 2);

on deduit queXetYne sont pas independantes.Distributions 16

Exemple :

f(x;y) =exp(y)0 < x < y <1 0 sinon

On a trouve :

f

X(x)= Z

f(x;y)dy=Z 1 x exp(y)dy= exp(x) f

Y(y)= yexp(y)

DoncXetYne peuvent pas ^etre independantes.

Exemple :(X;Y)a pour densite conjointef(x;y) = (x+y)2(xy)2sur [0;1]2. Les v.a.XetYsont-elles independantes?Distributions 17

4. Somme de deux v.a. independantes

Soit 2 v.a.XetY. On s'interesse a la distribution de leur sommeS=X+Y. D'une maniere generale, c'est un probleme dicile. En supposant queXetY sont independantes, le probleme est parfois simplie.

Cas discret

P(S = s)

P(X + Y = s)

=X xP(X = x;Y = sx) X xP(X = x)P(Y = sx):Distributions 18 Exemple :XPoi()etYPoi()sont independantes. Peut-on dire quelque chose deS=X+Y? PuisqueP(X = j) = 0quandj <0, etP(Y = kj) = 0quandj > k

P(X + Y = k)

kX j=0P(X = j)P(Y = kj) kX j=0exp()jj!exp()kj(kj)! exp( (+))1k!k X j=0C k;jjkj exp( (+))1k!:::Distributions 19

Donc on peut ecrire "Poi()ind+ Poi() = Poi(+)".

C'est plus l'exception que la regle de trouver une distribution simple et de m^eme loi. Par exemple a-t-on "Bin(n;p1)ind+ Bin(n;p2) = Bin(n;p1+p2)"? Ou plut^ot "Bin(n1;p)ind+ Bin(n2;p) = Bin(n1+n2;p)"?Distributions 20

Cas continu

SiXfXest independante deYfY, alorsS=X+Ya pour densite f

X+Y(s) =Z

f

X(x)fY(sx)dx:

On peut par exemple demontrer que

"N(1;21)ind+ N(2;22) = N(1+2;21+22)":Distributions 21

5. Distributions conditionnelles

Cas discret

P(X = xjY = y) =P(X = x;Y = y)P(Y = y)

Cas continu

f(xjY=y) =f(x;y)f Y(y) Ainsif(x;y) =f(xjY=y)fY(y). Donc siXetYsont independants, on obtient (page 14) : f(x;y) =fX(x)fY(y):Distributions 22

Exemple :XnYPharma SdlT Bio ChimieP(X = x)

Math10.05 0.02 0.15 0.080.30

Math20.18 0.04 0.23 0.120.57

Math30.02 0.02 0.06 0.040.13

P(Y = y)0.25 0.08 0.44 0.231

Tableau de probabilite

P(X = 2jY = Bio) =P(X=2;Y=Bio)P(Y=Bio)

=0:230:44= 0:52Distributions 23

Exemple :

f(x;y) =exp(y)0 < x < y <1 0 sinon f(xjY=y) =f(x;y)f(y)=exp(y)yexp(y)=1y pour0< x < y

DoncXjY=y:::.

f(yjX=x) =f(x;y)f(x)=exp(y)exp(x)= exp((yx))poury > x.

DoncYXjX=xExp(1).Distributions

24012345

0.0 0.5 1.0 1.5 2.0 x f(x|Y=0.5)

Conditional X|Y=0.5

012345

0.0 0.5 1.0 1.5 2.0 y f(y|X=1)

Conditional Y|X=1

012345

0.0 0.5 1.0 1.5 2.0 x f(x|Y=2)

Conditional X|Y=2

012345

0.0 0.5 1.0 1.5 2.0 y f(y|X=3) Conditional Y|X=3Fonctions de densite conditionnelle.

Distributions

quotesdbs_dbs42.pdfusesText_42
[PDF] distribution statistique a deux variables

[PDF] distribution conditionnelle statistique exercice corrigé

[PDF] redoublement scolaire pour ou contre

[PDF] tableau de contingence exercice corrigé

[PDF] fréquence cumulée croissante calcul

[PDF] commission d appel passage en seconde

[PDF] redoublement terminale refusé

[PDF] recours affectation lycée

[PDF] formule effectif cumulé croissant

[PDF] regulateur de pression d'eau reglage

[PDF] réducteur de pression eau

[PDF] comment installer un reducteur de pression d'eau

[PDF] le diagramme ci contre représente certains niveaux d'énergie

[PDF] la couleur de la nébuleuse d'orion

[PDF] la nébuleuse d'orion se trouve ? 1 70