[PDF] les matrices sur Exo7 A+ B = B + A : la





Previous PDF Next PDF



Opérations sur les matrices

On note Mpq l'ensemble des matrices `a p lignes et q colonnes. On peut additionner deux telles matrices : L'addition des matrices est commutative.



Clipedia

cas alors leur produit est une nouvelle matrice (C) qui possède le même nombre Montrons que la multiplication de deux matrices n'est pas commutative en ...



Sous-algèbre commutative définie dans lensemble des matrices

5 févr. 2014 Matrices bisymétriques. 13. CHAPITRE 2. 25. MATRICES BISYMETRIQUES COMMUTATIVES – ESPACE VECTORIEL BSCn () –. SOUS-ALGEBRE COMMUTATIVE BSCn ...



Fiche aide-mémoire 7 : Commutant dune matrice. 1 Des remarques

Soit A une matrice carrée d'ordre n. On appelle commutant de A l'ensemble des matrices M qui commutent avec A c'est-à-dire telles que AM =.



Sur les sous-algèbres commutatives de M n (k)

12 oct. 2020 Mots-clés: Matrice partie commutative



MATRICES

Les nombres sont appelés les coefficients de la matrice. Exemple : est une matrice de taille 2 x 3 La multiplication de matrices n'est pas commutative :.



les matrices sur Exo7

A+ B = B + A : la somme est commutative. 2. A+ (B + C)=(A+ B) + C : la somme est associative



Séries rationnelles et matrices génériques non commutatives

Dans ce travail nous nous intéressons aux séries rationnelJes et aux matrices gé nériques non commutatives. Dans le premier chapitre



Non commutative notions of Independence and Large Random

6 avr. 2017 In non commutative probability several notions: ... on an algebra spanned by random matrices



ON ¿-COMMUTATIVE MATRICES*

Definition. 2. The matrix A is k-commutative with respect to B where A and B are nXn matrices



Introduction to Matrices - Massachusetts Institute of Technology

matrix (A) and the corresponding elements in the jth column of the second matrix (B) NoticethattheproductABisnotde?nedunlesstheaboveconditionissatis?edthatisthe numberofcolumnsofthe?rstmatrixmustequalthenumberofrowsinthesecond Matrixmultiplicationisassociativethatis A(BC)=(AB)C (15) butisnotcommutativeingeneral AB= BA (16)



Matrix algebra for beginners Part I matrices determinants

you can add any two n×m matrices by simply adding the corresponding entries We will use A+B to denote the sum of matrices formed in this way: (A+B) ij = A ij +B ij Addition of matrices obeys all the formulae that you are familiar with for addition of numbers A list of these are given in Figure 2



Matrices and Linear Algebra - Texas A&M University

Matrices and Linear Algebra 2 1 Basics De?nition 2 1 1 A matrix is an m×n array of scalars from a given ?eld F The individual values in the matrix are called entries Examples A = ^ 213 ?124 B = ^ 12 34 The size of the array is–written as m×nwhere m×n cA number of rows number of columns Notation A = a11 a12 a1n a21 a22 a2n



Chapter 3 Matrices - Trinity College Dublin

matrices to be the ‘same’ matrix only if they are absolutely identical They have to have the same shape (same number of rows and same number of columns) and they have to have the same numbers in the same positions Thus all the following are different matrices 1 2 3 4 6= 2 1 3 4 6= 2 1 0 3 4 0 2 4 2 1 3 4 0 0 3 5 3 2 Double subscripts



Searches related to matrices commutatives PDF

matrix computations MATLAB is an easy to use very high-level language that allows the student to perform much more elaborate computational experiments than before MATLAB is also widely used in industry I have therefore added many examples and exercises that make use of MATLAB This book is not however an

What is matrix algebra?

Introduction to Matrices Modern system dynamics is based upon a matrix representation of the dynamic equationsgoverning the system behavior. A basic understanding of elementary matrix algebra isessential for the analysis of state-space formulated systems.

How many matrix multiplications are there?

0 0 2Note there are two matrix multiplications them, one for each Type 3 ele-mentary operation. by row operations. Called theRREF, it has the following properties. Each nonzero row has a 1 as the?rst nonzero entry (:=leading one). (b) All column entries above and below a leading one are zero.

Which matrix is skew symmetric?

The left matrix is symmetric while the right matrix is skew-symmetric.Hence both are the zero matrix. =(A+AT)+(AAT). Examples. A= is skew-symmetric. Let =(B?(B+BT). An important observation about matrix multiplication is related to ideasfrom vector spaces. Indeed, two very important vector spaces are associatedwith matrices.

What is the operation of addition of two matrices?

Elementary Matrix Arithmetic The operation of addition of two matrices is only de?ned when both matrices have the samedimensions. IfAandBare both (m×n), then the sum A+B=B+A. (9) cij =aij ?bij. (11) ij =k×aij. (12) in fact unless the two matrices are square, reversing the order in the product will causethe matrices to be nonconformal.

les matrices sur Exo7

Matrices

ramène à des manipulations sur les matrices. Ceci est vrai en particulier pour la résolution des systèmes linéaires.

Dans ce chapitre,Kdésigne un corps. On peut penser àQ,RouC.

1. Définition

1.1. DéfinitionDéfinition 1.

UnematriceAest un tableau rectangulaire d"éléments deK. Elle est dite detaillenpsi le tableau possèdenlignes etpcolonnes. Les nombres du tableau sont appelés lescoefficientsdeA.

Le coefficient situé à lai-ème ligne et à laj-ème colonne est notéai,j.Un tel tableau est représenté de la manière suivante :

A=0 B

BBBBB@a

1,1a1,2...a1,j...a1,p

a

2,1a2,2...a2,j...a2,p

a i,1ai,2...ai,j...ai,p a n,1an,2...an,j...an,p1 C

CCCCCAouA=ai,j

16i6n

16j6pouai,j.

Exemple 1.

A=12 5

0 3 7 est une matrice 23 avec, par exemple,a1,1=1 eta2,3=7.

Encore quelques définitions :Définition 2.

Deux matrices sontégaleslorsqu"elles ont la même taille et que les coefficients correspondants sont égaux.

L"ensemble des matrices ànlignes etpcolonnes à coefficients dansKest notéMn,p(K). Les éléments deMn,p(R)

MATRICES1. DÉFINITION2sont appelésmatrices réelles.1.2. Matrices particulières Voici quelques types de matrices intéressantes :

•Sin=p(même nombre de lignes que de colonnes), la matrice est ditematrice carrée. On noteMn(K)au lieu de

Mn,n(K).

0 B BB@a

1,1a1,2...a1,n

a

2,1a2,2...a2,n............

a n,1an,2...an,n1 C CCA Les élémentsa1,1,a2,2,...,an,nforment ladiagonale principalede la matrice. Une matrice qui n"a qu"une seule ligne (n=1) est appeléematrice ligneouvecteur ligne. On la note

A=a1,1a1,2...a1,p.

De même, une matrice qui n"a qu"une seule colonne (p=1) est appeléematrice colonneouvecteur colonne. On

la note A=0 B BB@a 1,1 a

2,1...

a n,11 C CCA.

La matrice (de taillenp) dont tous les coefficients sont des zéros est appelée lamatrice nulleet est notée0n,p

ou plus simplement 0. Dans le calcul matriciel, la matrice nulle joue le rôle du nombre 0 pour les réels.

1.3. Addition de matricesDéfinition 3(Somme de deux matrices).

SoientAetBdeux matrices ayant la même taillenp. LeursommeC=A+Best la matrice de taillenpdéfinie

par c ij=aij+bij.

En d"autres termes, on somme coefficients par coefficients. Remarque : on note indifféremmentaijoùai,jpour les

coefficients de la matriceA.

Exemple 2.

SiA=32

1 7 etB=0 5 21
alorsA+B=3 3 3 6

Par contre siB0=2

8 alorsA+B0n"est pas définie.Définition 4(Produit d"une matrice par un scalaire). Le produit d"une matriceA=aijdeMn,p(K)par un scalaire2Kest la matriceaijformée en multipliant chaque coefficient deApar. Elle est notéeA(ou simplementA).Exemple 3.

SiA=1 2 3

0 1 0 et=2 alorsA=2 4 6 0 2 0 La matrice(1)Aest l"opposéedeAet est notéeA. LadifférenceABest définie parA+(B).

MATRICES2. MULTIPLICATION DE MATRICES3

Exemple 4.

SiA=21 0

45 2
etB=1 4 2 75 3
alorsAB=352 3 01 L"addition et la multiplication par un scalaire se comportent sans surprises :Proposition 1. Soient A, B et C trois matrices appartenant à M n,p(K). Soient2Ket2Kdeux scalaires. 1.

A +B=B+A : la somme est commutative,

2.

A +(B+C) = (A+B)+C : la somme est associative,

3. A +0=A : la matrice nulle est l"élément neutre de l"addition,

4.(+)A=A+A,

5.(A+B) =A+B.Démonstration.Prouvons par exemple le quatrième point. Le terme général de(+)Aest égal à(+)aij. D"après

les règles de calcul dansK,(+)aijest égal àaij+aijqui est le terme général de la matriceA+A.Mini-exercices.

1.

SoientA=

€7 20114Š

,B=

€1 2 32 3 13 2 1Š

,C=

€2160 33 12Š

,D=12

1 0 10 1 01 1 1Š,E=

€1 23 08 6Š

. Calculer toutes les sommes possibles de deux de ces matrices. Calculer 3A+2Cet 5B4D. Trouvertel queACsoit la matrice nulle. 2.

Montrer que si A+B=A, alorsBest la matrice nulle.

3. Que vaut0A? et1A? Justifier l"affirmation :(A) = ()A. Idem avecnA=A+A++A(noccurrences deA).2. Multiplication de matrices

2.1. Définition du produit

Le produitABde deux matricesAetBest défini si et seulement si le nombre de colonnes deAest égal au nombre de

lignes deB.Définition 5(Produit de deux matrices). SoientA= (aij)une matricenpetB= (bij)une matricepq. Alors le produitC=ABest une matricenq dont les coefficientscijsont définis par :c ij=p X k=1a ikbkjOn peut écrire le coefficient de façon plus développée, à savoir : c ij=ai1b1j+ai2b2j++aikbkj++aipbpj. Il est commode de disposer les calculs de la façon suivante. 0 B B@ 1 C CA B A!0 B

B@ 1

C CA0 B B@j j cij1 C CA AB

MATRICES2. MULTIPLICATION DE MATRICES4Avec cette disposition, on considère d"abord la ligne de la matriceAsituée à gauche du coefficient que l"on veut

calculer (ligne représentée par desdansA) et aussi la colonne de la matriceBsituée au-dessus du coefficient que

l"on veut calculer (colonne représentée par desdansB). On calcule le produit du premier coefficient de la ligne par

le premier coefficient de la colonne (ai1b1j), que l"on ajoute au produit du deuxième coefficient de la ligne par le

deuxième coefficient de la colonne (ai2b2j), que l"on ajoute au produit du troisième...

2.2. Exemples

Exemple 5.

A=1 2 3

2 3 4 B=0 @1 2 1 1 1 11 A

On dispose d"abord le produit correctement (à gauche) : la matrice obtenue est de taille22. Puis on calcule chacun

des coefficients, en commençant par le premier coefficientc11=11+2(1) +31=2(au milieu), puis les autres (à droite). 0 @1 2 1 1 1 11 A 1 2 3

2 3 4

c11c12 c

21c220

@12 11 1 1 1 A 1 2 3

2 3 4

2c12 c

21c220

@1 2 1 1 1 11 A 1 2 3

2 3 4

2 7 3 11 Un exemple intéressant est le produit d"un vecteur ligne par un vecteur colonne : u=a1a2anv=0 B BB@b 1 b 2... b n1 C CCA

Alorsuvest une matrice de taille11dont l"unique coefficient esta1b1+a2b2++anbn. Ce nombre s"appelle le

produit scalairedes vecteursuetv.

Calculer le coefficientcijdans le produitABrevient donc à calculer le produit scalaire des vecteurs formés par la

i-ème ligne deAet laj-ème colonne deB.

2.3. Pièges à éviter

Premier piège. Le produit de matrices n"est pas commutatif en général.

En effet, il se peut queABsoit défini mais pasBA, ou queABetBAsoient tous deux définis mais pas de la même taille.

Mais même dans le cas oùABetBAsont définis et de la même taille, on a en généralAB6=BA.

Exemple 6.

5 1 32
2 0 4 3 =14 3 26
mais2 0 4 3 5 1 32
=10 2 292

Deuxième piège.AB=0n"implique pasA=0ouB=0.

Il peut arriver que le produit de deux matrices non nulles soit nul. En d"autres termes, on peut avoirA6=0etB6=0

maisAB=0.

Exemple 7.

A=01 0 5 B=23 0 0 etAB=0 0 0 0 Troisième piège.AB=ACn"implique pasB=C.On peut avoirAB=ACetB6=C.

MATRICES2. MULTIPLICATION DE MATRICES5

Exemple 8.

A=01 0 3 B=41 5 4 C=2 5 5 4 etAB=AC=54 15 12

2.4. Propriétés du produit de matrices

Malgré les difficultés soulevées au-dessus, le produit vérifie les propriétés suivantes :Proposition 2.

1.

A (BC) = (AB)C : associativité du produit,

2. A (B+C) =AB+AC et(B+C)A=BA+CA : distributivité du produit par rapport à la somme, 3.

A 0=0et0A=0.Démonstration.PosonsA= (aij)2Mn,p(K),B= (bij)2Mp,q(K)etC= (cij)2Mq,r(K). Prouvons queA(BC) = (AB)C

en montrant que les matricesA(BC)et(AB)Cont les mêmes coefficients.

Le terme d"indice(i,k)de la matriceABestxik=p

X `=1a i`b`k. Le terme d"indice(i,j)de la matrice(AB)Cest donc q X k=1x ikckj=q X k=1‚ pX `=1a i`b`kŒ c kj.

Le terme d"indice(`,j)de la matriceBCesty`j=q

X k=1b `kckj. Le terme d"indice(i,j)de la matriceA(BC)est donc p X `=1a i`‚ qX k=1b `kckjŒ

Comme dansKla multiplication est distributive et associative, les coefficients de(AB)CetA(BC)coïncident. Les

autres démonstrations se font comme celle de l"associativité.2.5. La matrice identité La matrice carrée suivante s"appelle lamatrice identité: I n=0 B

BB@1 0 ... 0

0 1 ... 0

0 0 ... 11

C CCA

Ses éléments diagonaux sont égaux à1et tous ses autres éléments sont égaux à0. Elle se noteInou simplementI.

Dans le calcul matriciel, la matrice identité joue un rôle analogue à celui du nombre1pour les réels. C"est l"élément

neutre pour la multiplication. En d"autres termes :Proposition 3.

Si A est une matrice np, alors

I nA=A et AIp=A.Démonstration.

Nous allons détailler la preuve. SoitA2Mn,p(K)de terme généralaij. La matrice unité d"ordrepest

telle que tous les éléments de la diagonale principale sont égaux à 1, les autres étant tous nuls.

On peut formaliser cela en introduisant le symbole de Kronecker. Siietjsont deux entiers, on appellesymbole de

Kronecker, et on notei,j, le réel qui vaut 0 siiest différent dej, et 1 siiest égal àj. Donc

i,j=¨0 sii6=j

1 sii=j.

Alors le terme général de la matrice identitéIpesti,javecietjentiers, compris entre 1 etp.

MATRICES2. MULTIPLICATION DE MATRICES6La matrice produitAIpest une matrice appartenant àMn,p(K)dont le terme généralcijest donné par la formule

cij= pX k=1a ikkj . Dans cette somme,ietjsont fixés etkprend toutes les valeurs comprises entre1etp. Sik6=jalors

kj=0, et sik=jalorskj=1. Donc dans la somme qui définitcij, tous les termes correspondant à des valeurs de

kdifférentes dejsont nuls et il reste donccij=aijjj=aij1=aij. Donc les matricesAIpetAont le même terme

quotesdbs_dbs30.pdfusesText_36
[PDF] quels sont les types de lecteurs

[PDF] matrice cours et exercices pdf

[PDF] matrice cours pdf

[PDF] cours determinant d'une matrice

[PDF] résumé sur les matrices pdf

[PDF] matrice deisenhower excel

[PDF] matrice deisenhower vierge

[PDF] télécharger matrice eisenhower excel

[PDF] matrice eisenhower vierge

[PDF] fichier excel matrice eisenhower

[PDF] matrice eisenhower exemple

[PDF] commandabilité définition

[PDF] exercice corrigé commandabilité et observabilité

[PDF] forme canonique commandable

[PDF] observabilité définition