[PDF] Déterminant (mathématiques) : définition de Déterminant





Previous PDF Next PDF



LES DÉTERMINANTS DE MATRICES

2- Le déterminant d'une matrice . 3- Calcul du déterminant pour une matrice ... Déterminants de matrices carrées de dimensions 4x4 et plus .



Cours de mathématiques - Exo7

Le déterminant permet de savoir si une matrice est inversible ou pas et de façon plus générale



Matrices déterminants 1. Les matrices

Dans tout ce cours on fixe un corps K : soit R



L1 MASS : Alg`ebre Linéaire Cours 9 mars 2006 Déterminants

Seules les matrices carrées ont des déterminants. Déterminants d'ordre 1 2 et 3. Le déterminant d'une matrice 1 × 1 est son coefficient 



MAT 1200: Introduction à lalgèbre linéaire

Les déterminants et les matrices inversibles Notes de cours chapitre 5 . ... Soit A = (a11) une matrice de type 1 × 1 le déterminant de A est.



Cours 3: Inversion des matrices dans la pratique

Inverse d'une matrice. Critère d'inversibilité : le déterminant. 2. Pivot de Gauss sur les matrices. But de l'algorithme. Présentation de la méthode.



Déterminant

On retrouve ici qu'une matrice triangulaire est inversible si et seulement si tous ces coefficients diagonaux sont non nuls. 2.3 Déterminant d'une famille de 



Déterminants

3.2 Propriétés du déterminant grâce aux matrices élémentaires et à Gauss-Jordan . . . . . . . . . . . 4 PCSI de l'Essouriau 19-20



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

de l'artillerie il rédige un cours de mathématiques à l'usage de la marine et Deux matrices semblables ont même trace



Chapitre 3 - Déterminants - Cours

Lycée Blaise Pascal - TSI 2 - Jérôme Von Buhren - http://vonbuhren.free.fr. CHAPITRE 3. Déterminants. Plan du chapitre. I Déterminant d'une matrice carrée .



LES DÉTERMINANTS DE MATRICES - HEC Montréal

confusion entre deux matrices contenant le même nombre d'entrées Par exemple une matrice de dimension 34 possède 3 rangées et 4 colonnes Celle?ci serait distincte d'une matrice 43 qui a 4 rangées et 3 colonnes quoiqu'elle compte également 12 entrées



Déterminant (mathématiques) : définition de Déterminant

Le déterminant permet de savoir si une matrice est inversible ou pas et de façon plus générale joue un rôle important dans le calcul matriciel et la résolution de systèmes linéaires Dans tout ce qui suit nous considérons des matrices à coef?cients dans un corps commutatif K les principaux exemples étant K = R ou K = C Nous



1 Qu'est-ce que le déterminant d'une matrice? - univ-toulousefr

Proposition 1 3 Le déterminant d'une matrice est nul dès lors que deux olonnesc de ettec matrice sont identiques La preuve de cette proposition nécessite deux résultats intermédiaires Lemme 1 4 Le déterminant d'une matrice est nul dès lors que deux olonnces onséccutives de ettec matrice sont identiques 2



Chapitre 3 : Les matrices - Claude Bernard University Lyon 1

Une matrice carrée D = dij est dite diagonale si tous ses éléments non diagonaux sont nuls Une telle matrice est fréquemment notée D =diag(d11d22 dnn) où certains ou tous les scalaires dii peuvent être égaux à zéro Exemples 1 100 030 002 = D 2 40 05 = ? D 3 1000 0000 0020 0005



Exo7 - Cours de mathématiques

1 3 Addition de matrices Dé?nition 3 (Somme de deux matrices) Soient A et B deux matrices ayant la même taille n p Leur somme C = A+B est la matrice de taille n p dé?nie par cij = aij + bij En d’autres termes on somme coef?cients par coef?cients Remarque : on note indifféremment aij où aij pour les coef?cients de la



Searches related to cours determinant d+une matrice PDF

Le d´eterminant nous donne une nouvelle m´ethode pour calculer l’inverse d’une matrice carr´ee La matrice (A ij ) 1?ij?n des cofacteurs est appel´e la comatrice de A not´ee com(A) Si A est une matrice (nn) elle est inversible si et seulement si det(A) 6= 0

Comment définir le déterminant de la matrice?

Les vecteurs colonnes de la matrice peuvent être identifiés à des éléments de l'espace vectoriel . Ce dernier est muni d'une base canonique. Il est alors possible de définir le déterminant de la matrice A comme le déterminant du système de ses vecteurs colonnes relativement à la base canonique.

Est-ce que le déterminant d'une matrice est nul?

Le déterminant d'une matrice est nul dès lors que deux olonnesc de ettec matrice sont identiques. La preuve de cette proposition nécessite deux résultats intermédiaires.

Quel est le déterminant de la matrice identité?

Il est noté det ( A) puisqu'il n'y a pas d'ambiguïté sur la base de référence. Par définition même, le déterminant dépend de façon linéaire de chaque colonne, et est nul lorsque deux colonnes sont égales. Le déterminant de la matrice identité vaut un.

Comment calculer le déterminant de la matrice triangulaire?

où M’ est une matrice triangulaire supérieure d’ordre n-1et où ?11est le premier coef?- cient diagonale de M. La propriété précédente permet d’af?rmer que det(M)=?11M’. Appliquons l’hypothèse de récurrence: le déterminant de M’ est égal au produit des coef?cients diagonaux de M’.

Déterminants

pède engendré par cesnvecteurs. On peut aussi définir le déterminant d"une matriceA. Le déterminant permet de

savoir si une matrice est inversible ou pas, et de façon plus générale, joue un rôle important dans le calcul matriciel et

la résolution de systèmes linéaires.

Dans tout ce qui suit, nous considérons des matrices à coefficients dans un corps commutatifK, les principaux

exemples étantK=RouK=C. Nous commençons par donner l"expression du déterminant d"une matrice en petites

dimensions.

1. Déterminant en dimension2et3

1.1. Matrice22

En dimension 2, le déterminant est très simple à calculer : deta b c d =adbc.

C"est donc le produit des éléments sur la diagonale principale (en bleu) moins le produit des éléments sur l"autre

diagonale (en orange).ab cd0 @1 A+

1.2. Matrice33

SoitA2M3(K)une matrice 33 :

A=0 @a

11a12a13

a

21a22a23

a

31a32a331

A

Voici la formule pour le déterminant :

DÉTERMINANTS1. DÉTERMINANT EN DIMENSION2ET32Il existe un moyen facile de retenir cette formule, c"est larègle de Sarrus: on recopie les deux premières colonnes à

droite de la matrice (colonnes grisées), puis on additionne les produits de trois termes en les regroupant selon la

direction de la diagonale descendante (à gauche), et on soustrait ensuite les produits de trois termes regroupés selon

la direction de la diagonale montante (à droite).a 11a 12a 13a 11a 12a 21a
22a
23a
21a
22a
31a
32a
33a
31a
320
B

BBBBB@1

C

CCCCCAa

11a 12a 13a 11a 12a 21a
22a
23a
21a
22a
31a
32a
33a
31a
320
B

BBBBB@1

C

CCCCCAExemple 1.

Calculons le déterminant de la matriceA=0

@2 1 0 11 3

3 2 11

A

Par la règle de Sarrus :

detA=2(1)1+133+012

3(1)0232111=6.21021

11311321320

B

BBBBB@1

C

CCCCCA

Attention : cette méthode ne s"applique pas pour les matrices de taille supérieure à3. Nous verrons d"autres méthodes

qui s"appliquent aux matrices carrées de toute taille et donc aussi aux matrices 33.

1.3. Interprétation géométrique du déterminant

On va voir qu"en dimension 2, les déterminants correspondent à des aires et en dimension 3 à des volumes.

Donnons nous deux vecteursv1=(ac)etv2=bddu planR2. Ces deux vecteursv1,v2déterminentun parallélogramme.v

1v 2xy O~ i~ jProposition 1. L"aire du parallélogramme est donnée par la valeur absolue du déterminant :

A=det(v1,v2)=deta b

c d .De manière similaire, trois vecteurs de l"espaceR3: v 1=0 @a 11 a 21
a 311
A v2=0 @a 12 a 22
a 321
A v3=0 @a 13 a 23
a 331
A définissent un parallélépipède. DÉTERMINANTS1. DÉTERMINANT EN DIMENSION2ET33v 1v 2v

3À partir de ces trois vecteurs on définit, en juxtaposant les colonnes, une matrice et un déterminant :

det(v1,v2,v3) =det0 @a

11a12a13

a

21a22a23

a

31a32a331

A .Proposition 2. Le volume du parallélépipède est donné par la valeur absolue du déterminant :

V=det(v1,v2,v3).On prendra comme unité d"aire dansR2l"aire du carré unité dont les côtés sont les vecteurs de la base canonique10,01, et comme unité de volume dansR3, le volume du cube unité.

Démonstration.

Traitons le cas de la dimension2. Le résultat est vrai siv1=(a0)etv2=0d. En effet, dans ce cas on

a affaire à un rectangle de côtésjajetjdj, donc d"airejadj, alors que le déterminant de la matricea0

0d vautad.v 1v 2ad O~ i~ j

Si les vecteursv1etv2sont colinéaires alors le parallélogramme est aplati, donc d"aire nulle; on calcule facilement

que lorsque deux vecteurs sont colinéaires, leur déterminant est nul.

Dans la suite on suppose que les vecteurs ne sont pas colinéaires. Notonsv1=(ac)etv2=bd. Sia6=0, alors

v0

2=v2ba

v1est un vecteur vertical :v0

2=€0

dba cŠ

L"opération de remplacerv2parv0

2ne change pas l"aire du parallélogramme (c"est comme si on avait coupé le triangle

vert et on l"avait collé à la place le triangle bleu).v 1v 2v 0 2O~ i~ jCette opération ne change pas non plus le déterminant car on a toujours : det(v1,v0

2) =deta0

b dba c =adbc=det(v1,v2).

On pose alorsv0

1=(a0): c"est un vecteur horizontal. Encore une fois l"opération de remplacerv1parv0

1ne change ni

l"aire des parallélogrammes ni le déterminant car det(v0 1,v0

2) =deta0

0dba c =adbc=det(v1,v2). DÉTERMINANTS2. DÉFINITION DU DÉTERMINANT4v 1v 0 2v 0 1O~ i~

jOn s"est donc ramené au premier cas d"un rectangle aux côtés parallèles aux axes, pour lequel le résultat est déjà

acquis. Le cas tridimensionnel se traite de façon analogue.Mini-exercices. 1.

P ourA=1 2

5 3 etB=7 8 9 5 calculer les déterminants deA,B,AB,A+B,A1,A,AT. 2.

Mêmes questions pour A=a b

c d etB=a00 c 0d0 3.

Mêmes questions pour A=0

@2 0 1 21 2

3 1 01

quotesdbs_dbs26.pdfusesText_32
[PDF] résumé sur les matrices pdf

[PDF] matrice deisenhower excel

[PDF] matrice deisenhower vierge

[PDF] télécharger matrice eisenhower excel

[PDF] matrice eisenhower vierge

[PDF] fichier excel matrice eisenhower

[PDF] matrice eisenhower exemple

[PDF] commandabilité définition

[PDF] exercice corrigé commandabilité et observabilité

[PDF] forme canonique commandable

[PDF] observabilité définition

[PDF] matrice de trace nulle probleme

[PDF] querelle des anciens et des modernes jean de la fontaine

[PDF] anecdote sur anne frank

[PDF] exercice montrer que deux matrices sont semblables