[PDF] Ch 1. Ensembles et dénombrement I. Ensembles II. Cardinaux





Previous PDF Next PDF



Ch 1. Ensembles et dénombrement I. Ensembles II. Cardinaux

Corollaire 12 Soit A un ensemble fini de cardinal n. Le la probabilité d'un événement A se calcule facilement : P(A) = ?.



Mathématiques pour la finance

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2. Le calcul des Probl`eme : Comment calculer les cardinaux dans des.



Quelques notions mathématiques de base

22?/01?/2017 tiques fondamentales (utilisées souvent en probabilités entre autre). ... Le nombre des éléments de E est appelé cardinal de E. Il est noté.



Chapitre 3 : Cardinaux factorielles et coefficients binomiaux. 1

aspect est la structure cardinale c'est l'aspect ”nombre” et calcul que nous allons étudier ici. Definition 1. On dit que deux ensembles E et F ont le même 



Cardinalité des ensembles finis

cardinal d'un ensemble précise la notion de nombre d'éléments équiprobable (c'est à dire que chaque élément à la même probabilité.



Probabilités MATH 424 Feuille de travaux dirigés 2. Solutions.

Calculer la probabilité que la somme des points marqués sur les trois faces soit paire. ont un chiffre distinct” et son cardinal est 120 = 6×5×4.



PROBABILITÉS CONDITIONNELLES

Méthode : Calculer une probabilité conditionnelle à l'aide d'un tableau On rappelle que Cardinal de A noté Card(A)



Cours de probabilités et statistiques

Cette formule n'est valable que lorsque les événements élémentaires sont bien équiprobables. Dans ce cas il suffit de savoir calculer le cardinal des ensembles.



Probabilités

Si E et F sont deux ensembles finis le cardinal du produit cartésien E × F Remarque: Pour calculer la probabilité qu'un événement A et un.



ficall.pdf

Calculer ces cardinaux et en déduire la valeur de On peut alors résoudre un célèbre problème de probabilité le problème des chapeaux. n personnes.



[PDF] Ch 1 Ensembles et dénombrement I Ensembles II Cardinaux

On a (X = x) ? ? il s'agit d'un événement et on peut calculer sa probabilité Exemple : on lance trois fois une pi`ece ? = {F P}×{F P}×{ 



[PDF] Cours de probabilités et statistiques

Dans ce cas il suffit de savoir calculer le cardinal des ensembles considérés pour calculer les probabilités Page 9 1 4 IND´EPENDANCE ET CONDITIONNEMENT 9



[PDF] 2 - Le calcul des probabilités - Renaud Bourles - Centrale Marseille

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris Chapitre 2 Le calcul des Probl`eme : Comment calculer les cardinaux dans des



[PDF] Cardinalité des ensembles finis - Université de Toulouse

Qui se traduit de la manière suivante avec les cardinaux Proposition Soient E et F deux ensembles finis On a : Il existe une application injective de E dans 



[PDF] Cours de Probabilités

Cette formule permet de calculer la probabilité d'un événement B en le décomposant suivant un système complet d'événements (En effet B est égal à la réunion 



[PDF] Probabilités - AC Nancy Metz

Cardinal d'un ensemble Définition Si E est un ensemble fini le cardinal de E est le nombre d'élément de E On le note Card(E) ou #E () Probabilités



[PDF] Analyse combinatoire

6 mar 2008 · Calculer la probabilité que le 6 apparaisse au moins une fois Quelle valeur donner `a n pour que cette probabilité atteigne 1/2 ?



[PDF] Introduction au Calcul des Probabilités

Par rapport aux rudiments de calcul des probabilités enseignés au lycée Ce document est disponible sur Internet au format PDF `a l'adresse suivante



[PDF] Formulaire de Probabilités et Statistique - Christophe Chesneau

pdf ? Éléments de cours de Probabilités de Jean-François Marckert : Cardinal : Le nombre des éléments d'un ensemble fini A est appelé cardinal de A



[PDF] Dénombrement

Définir la notion de cardinal et les opérations sur les cardinaux Formule du crible 3 Notion de dénombrabilité 4 Arrangements permutations et combinaisons 

On a (X = x) ? ?, il s'agit d'un événement, et on peut calculer sa probabilité. Exemple : on lance trois fois une pi`ece. ? = {F, P}×{F, P}×{ 
  • Comment calculer la cardinal probabilité ?

    = P(A) + P(B) ? P(A ? B).
  • Comment calculer le cardinal de à ?

    Le cardinal de A, noté Card(A), est le nombre d'éléments de l'ensemble A.
  • Comment déterminer le cardinal d'un ensemble ?

    Lorsqu'un ensemble est fini, c'est-à-dire si ses éléments peuvent être listés par une suite finie, son cardinal est la longueur de cette suite, autrement dit il s'agit du nombre d'éléments de l'ensemble. En particulier, le cardinal de l'ensemble vide est zéro.
  • Cantor utilisa la notation hébraïque ? (aleph, 1ère lettre de l'alphabet hébreu choisie au détriment des lettres grecques déjà trop utilisées) pour désigner les nombres transfinis : ?o est le cardinal de N. Un ensemble équipotent à N est dit dénombrable. Tout sous-ensemble infini de N est équipotent à N lui-même.

Ch 1. Ensembles et d´enombrementI. EnsemblesD´efinition 1Un ensemble est une collection de choses

qu"on appelle´el´ements. L"ensemble vide est not´e∅. Dans la suite, on consid`erera toujours un ensemble universel Ω(on lit"grand om´ega"), et tous les ensembles consid´er´es seront des parties deΩ. On noteP(Ω)l"ensemble des parties deΩ. Exemple. D´efinition 2SoientAetBdeux ensembles. On d´efinit : -A?B, l"union deAetB, est l"ensemble des´el´ements qui sont dansAou dansBou dans les deux. -A∩B, l"intersection deAetB, est l"ensemble des´el´e- ments qui sont dansAet dansB. -A\B, la diff´erenceAmoinsB, est l"ensemble des´el´e- ments qui sont dansA, mais pas dansB. -AΔB, la diff´erence sym´etrique deAetB, l"ensemble des´el´ements qui sont soit dansAsoit dansB, mais pas dansA∩B. -Acou A, le compl´ementaire deA, l"ensemble des´el´e- ments qui ne sont pas dansA. 1 On repr´esente graphiquement, d´es que c"est possible, les ensembles grˆace`ades diagrammes de Venn.

Proposition 3Premi`eres relations :

- commutativit´e:A∩B=B∩A,A?B=B?A. - associativit´e:A∩(B∩C) = (A∩B)∩C=

A∩B∩C,A?(B?C) = (A?B)?C=A?B?C.

- distributivit´e:(A?B)∩C= (A∩C)?(B∩C),

A?(B∩C) = (A?B)∩(A?C).

-(A?B)c=Ac∩Bc,(A∩B)c=Ac?Bc

Proposition 4 (R`egles de De Morgan)

n? i=1A i? ∩B=n? i=1(Ai∩B) n? i=1A i? ?B=n? i=1(Ai?B) n? i=1A i? c=n? i=1Aci,? n? i=1A i? c=n? i=1Aci

D´efinition 5SoientAetBdeux ensembles. On pose

C={(a,b) :a?A,b?B}. On appelleCl"ensemble

produit deAetBet on le noteA×B. 2 (exemples, g´en´eralisation) v´erifie les deux conditions : -Ai∩Aj=∅pour tousi?=j n? i=1A i= Ω (exemples, g´en´eralisation) D´efinition 7SoitA?Ω. On d´efinit surΩla fonction indicatrice deA,1lA, par : ?ω?Ω,1lA(ω) =?1siω?A

0sinon

(exemple) 3

II. Cardinaux

D´efinition 8SoitAun ensemble fini. Le cardinal deA, not´e|A|, est le nombre d"´el´ements que contientA. (exemple)

Proposition 9Additivit´e

SoientAetBdeux ensembles finis, disjoints (c"est-`a-dire

A∩B=∅). Alors

|A?B|=|A|+|B|

Proposition 10Multiplicativit´e

SoientAetBdeux ensembles finis, etC=A×B. Alors

|C|=|A| · |B| (preuve)

Corollaire 11Principe du d´enombrement

On r´ealise deux exp´eriences qui peuvent produire respec- tivementnetmr´esultats diff´erents. Au total, pour les deux exp´eriences prises ensemble, il existen.mr´esultats possibles. Corollaire 12SoitAun ensemble fini de cardinaln. Le nombre de suites de longueurrconstitu´ees d"´el´ements de

Aestnr.

4

Proposition 13 (Inclusion-exclusion)SoientAetB

deux ensembles finis. |A?B|=|A|+|B| - |A∩B| Plus g´en´eralement, pournensembles finisA1,...,An, |A1? ··· ?An|=n? i=1|Ai| -? iIII. D´enombrement D´efinition 14SoitAun ensemble fini. Une permutation deAest une mani`ere d"ordonner, d"arranger les´el´ements deA. La formulation math´ematique est : une permutation deAest une bijection deAdansA. Th´eor`eme 15Il y an!permutations d"un ensemble de cardinaln. preuve : clair par le principe du d´enombrement.♣ exemple : combien existe-t-il d"anagrammes de PROBA? 5 Th´eor`eme 16Soientnobjets distinguables. Le nombre de permutations derobjets, pris parmi lesnobjets, est A r n=n! (n-r)! (on dit aussi arrangement derobjets pris parmin) preuve :pour la premi`ere place, il y anobjets possibles, pour la seconde,(n-1)objets possibles, pour la derni`ere,(n-r+ 1)objets possibles. Au total,n(n-1)...(n-r+ 1)possibilit´es, par le principe du d´enombrement.♣ Th´eor`eme 17Le nombre de mani`eres de choisirp´el´e- ments parmin(sans tenir compte de l"ordre) est n p?=n! p!(n-p)! Autrement dit, c"est le nombre de parties`ap´el´ements pris parmin´el´ements. On appelle parfois ces parties des combinaisons dep´el´ements pris parmin. preuve : on regarde le nombre de permutations de cesp ´el´ements et on obtientp!arrangements. Il y a doncp!fois plus d"arrangements que de combinaisons.♣ 6

Proposition 181)?n

p?=?n n-p? 2) ?n p?=?n-1 p?+?n-1 p-1?

3)(x+y)n=?np=0?n

p?xpyn-p Corollaire 19SoitΩun ensemble fini de cardinaln. Le cardinal deP(Ω)vaut2n. preuve : il existe 1 partie`a0´el´ement, il existenparties`a1´el´ement, il existe?n p?parties`ap´el´ements, il existe 1 partie`an´el´ements.

Finalement, le nombre total de parties est

n p=0? n p?=n? p=0? n p?1r1n-r= (1 + 1)n= 2n Th´eor`eme 20On consid`erenobjets, parmi lesquelsn1 sont indistinguables,...,nrsont aussi indistinguables. Le nombre de permutations diff´erentes estn! n1!···nr! exemple : combien d"anagrammes de STAT? 4!/2!=12 7 exemple :r´esultat du loto (6 num´eros). - mani`ere de voir 1 : on regarde en direct le tirage du loto et on obtient un arrangement de 6 nombres pris dans {1,...,49}. On a alorsω= (x1,...,x6): les 6 nom- bres sortis avec leur ordre d"arriv´ee. Quel est le nombre de tirages diff´erents? A 6

49= 49?48?47?46?45?44 = 10.068.347.520

Mais on peut gagner les 6 bons num´eros quel que soit l"or- dre de sortie des 6 num´eros... - mani`ere de voir 2 : on regarde les 6 nombres sortis sans s"occuper de l"ordre d"arriv´ee.On a alorsω={x1,...,x6}. D"o`uΩest l"ensemble des combinaisons de 6 nombres pris dans{1,...,49}.

Quel est le nombre de tirages diff´erents?

49

6?=49?48?47?46?45?44

6?5?4?3?2= 13.983.816

remarque :(1,2,3,4,5,6)?= (2,1,3,4,5,6), mais {1,2,3,4,5,6}={2,1,3,4,5,6} 8

Ch 2. Le mod`ele probabiliste

I. Ensemble fondamental et ´ev´ene-

ments D´efinition 21Une exp´erience al´eatoire est une action, une proc´edure, qui donne un r´esultat impr´evisible, mais dont on connaˆıt pr´ecis´ement l"ensemble des r´esultats pos- sibles. Cet ensemble, not´eΩ, est appel´eensemble fonda- mental ou univers ou ensemble des possibles.

Exemples :

- lancer d"un d´e. On observera un r´esultatk? {1,...,6}. - sondageaupr`es de 1000 utilisateursd"un t´el´ephoneportable.

On observera le nombre d"abonn´es`aorange.

- questionnaire`a100 r´eponses binaires. On observera des suitesωde 100 r´eponses prisesdans{0,1};ω? {0,1}100. - parcours d"un taxi. On observera une fonction continue (trajectoire). - mise en service d"un ordinateur. On observera sa dur´ee de fonctionnement qui appartient`aR+. 9 D´efinition 22Onappelle´ev´enement´el´ementairetout´el´e- mentωdeΩ. C"est un r´esultat possible de l"exp´erience al´eatoire. On appelle´ev´enement toute partie deΩ. Pour d´esigner des´ev´enements, on utilisera souvent des let- tres capitales du d´ebut de l"alphabet (A,B,...). Exemples : - on lance un d´e. AlorsΩ ={1,...,6}. L"´ev´enementA:"on obtient un chiffre pair"est consti- tu´edes trois´ev´enements´el´ementaires 2, 4 et 6. On a :

A={2,4,6}.

- on lance trois fois une pi`ece de monnaie. Il est bon que les´ev´enements´el´ementaires d´ecrivent le plus pr´ecis´ement possible le r´esultat de cette exp´erience. On choisit donc de d´ecrireωpar un triplet(r1,r2,r3)qui donne les r´esul- tats des trois lancers (dans l"ordre). L"´ev´enementB:"on obtient pile au deuxi`eme lancer"est

B={(f,p,f),(f,p,p),(p,p,f),(p,p,p)}

Il n"est parfois pas n´ecessaire de connaˆıtre tous ces d´etails. On pourra aussi choisir :ωrepr´esente le nombre de"face" obtenus. Alors,Ω ={0,1,2,3}. Le mod`ele est beau- coup plus simple, mais ne permet pas de d´ecrire des´ev´ene- ments tels queB. Et les calculs qui vont suivre ne sont pas forc´ement simples, eux. Il existe plusieurs mani`eres de mod´eliser l"ensemble fonda- mental. Le choix du mod`ele est un des aspects difficiles de ce cours. 10

Vocabulaire probabiliste

Nous allons manipuler des ensembles, mais en utilisant un vocabulaire propre aux probabilit´es. Si le r´esultatωde l"exp´erience al´eatoire appartient`aA, on dit queωr´ealiseA, ou queAest r´ealis´e. Ainsi,Ω, qui est toujours r´ealis´e, est appel´e ´ev´enement certain. Et∅, qui n"est jamais r´ealis´e, est appel´e ´ev´enement impossible.

SiAetBsont deux´ev´enements,

-A?Bse dit"AimpliqueB"(car siAest r´ealis´e,B aussi), -A?Bse dit"AouB"(car siA?Best r´ealis´e,Aou

Best r´ealis´e),

-A∩Bse dit"AetB", -Acest l"´ev´enement contraire deA, -A∩B=∅se dit"AetBsont incompatibles", ou encore disjoints. Exemple : On lance un d´e. On poseΩ ={1,...,6}. Soit Al"´ev´enement"on obtient un chiffre pair". Le contraire de A,Ac, est l"´ev´enement"on obtient un chiffre impair". 11

II. Probabilit´es

Pensez`aquelques phrases de la vie courante qui conti- ennent le mot"probabilit´e". On constate qu"on parle tou- jours de la probabilit´ed"un´ev´enement. Consid´erons donc un´ev´enementA. Que repr´esente la probabilit´edeA, not´ee

P(A)? Il existe plusieurs mani`eres de voir.

- Proportion : On lance un d´e. Quelle est la probabilit´edeA="obtenir un chiffre pair"? Chaque face du d´ea la mˆeme chance, et il y en a 6. Quant aux chiffres pairs, ils sont 3. D"o`u, intuitivement,P(A) =3

6= 1/2.

- Fr´equence : On lance une pi`ece de monnaie. Quelle est la probabilit´e d"obtenir FACE? On lance une pi`ece un grand nombre de fois. Notonsknle nombre de FACE obtenus en lan¸cantn fois la pi`ece. Alors

P(FACE) = limn→+∞k

n n - Opinion : Quelle est la probabilit´epour que les´etudiants votent au second tour des pr´esidentielles? Quelle est la probabilit´e pour que l"´equipe de Montceau gagne la coupe? pour que l"OL soit championne de France? 12 D´efinition 23Soit une exp´erience al´eatoire etΩl"espace des possibles associ´e. Une probabilit´esurΩest une appli- cation, d´efinie sur l"ensemble des´ev´enements, qui v´erifie : - axiome 2 : pour toute suite d"´ev´enements(Ai)i?N, deux `adeux incompatibles, P i?NA i? i?NP(Ai) - axiome 3 :P(Ω) = 1 Remarque : les´ev´enements(Ai)i?Nsont deux`adeux in- compatibles, si pour tousi?=j,Ai∩Aj=∅. D´efinition 24Soit une exp´erience al´eatoire mod´elis´ee par un espace des possiblesΩet une probabilit´eP. On appelle le couple(Ω,P)un espace de probabilit´e. Corollaire 25SiΩest d´enombrable (c"est-`a-dire fini ou en bijection avecN), on peut num´eroter les´ev´enements ´el´ementairesω1,ω2,.... Les´ev´enements´el´ementaires sont deux`adeux incompatibles, et pour tout´ev´enementA, on peut´ecrireA=?ω?A{ω}et, d"apr`es le deuxi`eme ax- iome,

P(A) =?

ω?AP(ω)

13 Que signifie"un´ev´enementAa pour probabilit´e..."?

0.95 :Ava tr`es probablement se produire.

0.03 :Aa tr`es peu de chance d"ˆetre r´ealis´e.

4.0 : incorrect.

-2 : incorrect.

0.4 :Ava se produire dans un peu moins de la moiti´edes

essais.

0.5 : une chance sur deux.

0 : aucune chance queAsoit r´ealis´e.

Proposition 26SoientAetBdeux´ev´enements.

1) SiAetBsont incompatibles,

P(A?B) =P(A) +P(B).

2)P(Ac) = 1-P(A).

3)P(∅) = 0.

5)P(A?B) =P(A) +P(B)-P(A∩B).

(preuve) 14 Exemple :Trois´ev´enementsA,BetCsont repr´esent´es sur ce diagramme.

Calculons

-P(A) -P(B∩Cc) -P(A?B) - la probabilit´epour que`ala foisBetCsoient r´ealis´es -Cest r´ealis´e, mais pasB - exactement l"un des trois´ev´enements est r´ealis´e. 15

III. La probabilit´e uniforme

D´efinition 27Consid´erons une exp´erience al´eatoire, dont l"ensemble fondamentalΩest fini, et telle que chaque ´ev´enement´el´ementaire a la mˆeme probabilit´e. On parle, dans ce cas, d"´ev´enements´el´ementaires´equiprobables. No- tonspla probabilit´ecommune des´ev´enements´el´emen- taires. Alors

1 =P(Ω) =?

ω?ΩP(ω) =?

ω?Ωp=p× |Ω|

D"o`up=P(ω) =1

|Ω|, pour toutω. La probabilit´eainsi d´efinie sur l"ensembleΩs"appelle probabilit´euniforme. Proposition 28Dans le cadre de la probabilit´euniforme, la probabilit´ed"un´ev´enementAse calcule facilement :

P(A) =?

ω?AP(ω) =|A|

Attention! Cette formule n"estvalableque lorsqueles´ev´ene- ments´el´ementaires sont bien´equiprobables. 16 Exemple : on lance deux d´es distinguables. On mod´elise cette exp´erience`al"aide de l"ensemble des possiblesΩ = de sym´etrie, les probabilit´es des´ev´enements´el´ementaires peuventˆetre suppos´ees toutes´egales`a1/|Ω|= 1/36. Calculons la probabilit´ede voir apparaˆıtre au moins un as.

NotonsAcet´ev´enement.

P(A) = 1-P(Ac) = 1-|Ac|

= 1-52

62= 11/36 = 0.6944

Exemple : quand on lance deux d´es, la probabilit´ed"obtenir un 3 et un 4 est sup´erieure`ala probabilit´ed"obtenir un double 6. En effet, notonsAle premier´ev´enement consid´er´eetBle second. Visiblement,Aest de cardinal 2, alors queBest de cardinal 1. 17 Exemple : le prince de Toscane avait constat´equ"il obtenait plus souvent 11 que 12 avec trois d´es. Pourtant, le nombre de combinaisons dont la somme fait 12 est le mˆeme que le nombre de combinaisons dont la somme fait 11. Alors? Les

6 combinaisons qui donnent 11 sont

Les 6 combinaisons qui font 12 sont

Nous avons le choix entre deux univers diff´erents :

1={triplets(a,b,c)}(on distingue les d´es et on note

leurs r´esultats toujours dans le mˆeme ordre.quotesdbs_dbs22.pdfusesText_28
[PDF] cardinal d'un ensemble exercices corrigés

[PDF] calculer un cardinal

[PDF] cardinal de l ensemble des parties d un ensemble

[PDF] formule cardinal probabilité

[PDF] comment calculer cardinal avec calculatrice

[PDF] intersection probabilité formule

[PDF] comment calculer p(a)

[PDF] diviser des puissances de 10

[PDF] méthode de horner factorisation d'un polynôme

[PDF] méthode de horner exercices

[PDF] methode de horner pdf

[PDF] methode de horner algorithme

[PDF] horner method

[PDF] méthode de horner exercice corrigé

[PDF] schema de horner