[PDF] [PDF] Cardinalité des ensembles finis - Université de Toulouse





Previous PDF Next PDF



Ch 1. Ensembles et dénombrement I. Ensembles II. Cardinaux

Et les calculs qui vont suivre ne sont pas forcément simples eux. Il existe plusieurs mani`eres de modéliser l'ensemble fonda- mental. Le choix du mod`ele est 



Cardinalité des ensembles finis

Il existe application injective de F sur E mais pas d'application surjective. En fait



2 - Le calcul des probabilités

o`u card(E) représente le cardinal de E c'est `a dire le nombre d'événements Probl`eme : Comment calculer les cardinaux dans des probl`emes plus ...



Cardinal du cône nilpotent

2 Calcul du cardinal du cône nilpotent sur 1q. 1. Énoncer le théorème et la proposition que nous admettons. 2. Premier calcul via la première composante :



Document - Dénombrement dans un espace vectoriel fini

Il suffit donc de calculer le cardinal de GLn(Fq). 2) Si M ∈ Mn(Fq) notons M1



Cours de probabilités et statistiques

Dans ce cas il suffit de savoir calculer le cardinal des ensembles k(1 − p)k−1 = p/p2 = 1/p. Un calcul analogue permet de calculer la variance (exercice).



Partiel alg`ebre.

Soit P un 7-Sylow et N = NG(P). Calculer le cardinal de N. Prouver que P op`ere transitivement par conjugaison sur S − {P}. (I2) Montrer 



Chapitre 3 : Cardinaux factorielles et coefficients binomiaux. 1

cardinale c'est l'aspect ”nombre” et calcul que nous allons étudier ici. Definition 1. On dit que deux ensembles E et F ont le même cardinal s'il existe ...



Chapitre VII - Courbes elliptiques

2) On essaye de calculer le cardinal de E(Z/NZ). 〈〈 comme si N était P = O. D'apr`es l'algorithme de pseudo-addition dans VnE



Le nombre et le calcul

L'estimation permet de produire rapidement des résultats approchés des approximations. • Le comptage : c'est obtenir le cardinal exact d'une collection. L' 



Ch 1. Ensembles et dénombrement I. Ensembles II. Cardinaux

Corollaire 12 Soit A un ensemble fini de cardinal n. Le ments tels que B. Et les calculs qui vont suivre ne sont pas forcément simples eux.



Quelques notions mathématiques de base

22 janv. 2017 ... les cardinaux : on pose A={tirages avec remise de 2 produits contenant au moins un produit défectueux}. On cherche à calculer Card(A).



Mathématiques pour la finance

Le calcul des probabilités o`u card(E) représente le cardinal de E c'est `a dire le nombre ... Probl`eme : Comment calculer les cardinaux dans des.



1) CARDINAL dun ensemble fini. ( effectif ) 2) PARTIES dun

Un ensemble ? contenant n éléments où n ? IN est dit « fini ». On dit alors que « le cardinal de ? est n » on note card(?) = n ou encore ? = n 



Cardinalité des ensembles finis

Il existe application injective de F sur E mais pas d'application surjective. En fait



Document - Dénombrement dans un espace vectoriel fini

Il suffit donc de calculer le cardinal de GLn(Fq). 2) Si M ? Mn(Fq) notons M1



Chapitre 3 : Cardinaux factorielles et coefficients binomiaux. 1

aspect est la structure cardinale c'est l'aspect ”nombre” et calcul que nous allons étudier ici. Definition 1. On dit que deux ensembles E et F ont le même 



Soit E un ensemble fini à n éléments. Calculer ? Card(X) Déjà il

Calculer. ?. X?E. Card(X). Déjà il faut bien comprendre que l'on somme sur tous les sous-ensembles de cardinal



COMBINATOIRE ET DÉNOMBREMENT

Le nombre d'éléments de est appelé le cardinal de l'ensemble et il est noté : ( ) ou



§3. Stabilisateur quotient et orbite* 9 3.5. Proposition. Soit G un

l'orbite et calculer le cardinal de son stabilisateur. Il est naturel de choisir un élément « aussi simple que possible » dans notre cas la matrice Im



[PDF] Ch 1 Ensembles et dénombrement I Ensembles II Cardinaux

Cardinaux Définition 8 Soit A un ensemble fini Le cardinal de A noté A est le nombre d'éléments que contient A (exemple) Proposition 9 Additivité



[PDF] Les cardinaux

Tout ensemble infini est en bijection avec un unique cardinal défini comme un ordinal nant HCG on calcule explicitement ?? pour tous ??



[PDF] Cardinalité des ensembles finis - Université de Toulouse

Qui se traduit de la manière suivante avec les cardinaux Proposition Soient E et F deux ensembles finis On a : Il existe une application injective de E dans 



[PDF] Chapitre 3 : Cardinaux factorielles et coefficients binomiaux

Le second aspect est la structure cardinale c'est l'aspect ”nombre” et calcul que nous allons étudier ici Definition 1 On dit que deux ensembles E et F ont 



[PDF] ? 1) CARDINAL dun ensemble fini ( effectif ) ?2) PARTIES dun

Un ensemble ? contenant n éléments où n ? IN est dit « fini » On dit alors que « le cardinal de ? est n » on note card(?) = n ou encore ? = n 



[PDF] Dénombrement

Définir la notion de cardinal et les opérations sur les cardinaux Formule du crible 3 Notion de dénombrabilité 4 Arrangements permutations et combinaisons 



[PDF] 2 - Le calcul des probabilités - Renaud Bourles - Centrale Marseille

Probl`eme : Comment calculer les cardinaux dans des probl`emes plus compliqués (loto foot tiercé jeux de carte)? Renaud Bourl`es - École Centrale 



[PDF] Analyse combinatoire

6 mar 2008 · Calculer la probabilité que le 6 apparaisse au moins une fois Quelle valeur donner `a n pour que cette probabilité atteigne 1/2 ?



[PDF] COMBINATOIRE ET DÉNOMBREMENT - maths et tiques

Dénombrer c'est compter le nombre d'éléments que contient un ensemble fini c'est à dire en déterminer le cardinal Exemples : ? L'ensemble des joueurs d' 



[PDF] Le Dénombrement — - Pascal Delahaye

21 jui 2018 · L'objectif de ce chapitre est de présenter les concepts et résultats fondamentaux permettant de calculer le cardinal

  • Quel est le cardinal de N ?

    Cantor utilisa la notation hébraïque ? (aleph, 1ère lettre de l'alphabet hébreu choisie au détriment des lettres grecques déjà trop utilisées) pour désigner les nombres transfinis : ?o est le cardinal de N. Un ensemble équipotent à N est dit dénombrable. Tout sous-ensemble infini de N est équipotent à N lui-même.
  • Comment calculer le produit cartésien ?

    Le produit cartésien est aussi défini par : A ? B = {(x, y) x ? A ? y ? B}. Le produit cartésien A ? A est généralement noté A2 et est appelé le carré cartésien de A.
  • Calcul du cardinal

    1Si n = 0 alors E = ? donc E × F = ? donc la propriété est vérifiée.2Sinon, il existe une liste bijective ( x1 , … , x n ) sur E et on note pour tout i ? ?1 ; n ?, A i = { x i } × F .
[PDF] Cardinalité des ensembles finis - Université de Toulouse

Cardinalité

Université de Toulouse

Année 2020/2021

1 / 23

Cardinalité des ensembles finis

Cardinalité des ensembles finis2 / 23

Ensembles équipotents

SoientE=fa;b;c;dgetF=f1;2;3g.Il existe une application surjective deEsurF, mais pas d"application injective.Il existe application injective deFsurE, mais pas d"application surjective. En fait, il n"y a pas assez d"éléments dansF(ou trop peu dansE). Le cardinal d"un ensemble précise la notion de nombre d"élémentsEnsemble de même cardinal Deux ensembles (fini ou non) sontéquipotentsou demême cardinals"il existe une bijection entre eux. Cardinalité des ensembles finisEnsembles équipotents3 / 23

Cardinal d"un ensemble fini

Définition

Un ensembleEestfinisiE=;ou si9n2?tel queEest en bijection avecf1;:::;ng. Cet entier est unique, il est appelé lecardinaldeEnoté

Card(E). SiE=;, on poseCard(E) =0.Pour montrer que cet entier est définit de manière unique, on prouve la

proposition suivante :Proposition S"il existe une application injective def1;:::;ngdansf1;:::;kgalors nk.S"il existe une application surjective def1;:::;ngdansf1;:::;kg alorsnk.S"il existe une application bijection def1;:::;ngdansf1;:::;kgalors n=k.Cardinalité des ensembles finisCardinal d"un ensemble fini4 / 23

Cardinal d"un ensemble fini

Définition

Un ensembleEestfinisiE=;ou si9n2?tel queEest en bijection avecf1;:::;ng. Cet entier est unique, il est appelé lecardinaldeEnoté Card(E). SiE=;, on poseCard(E) =0.Qui se traduit de la manière suivante avec les cardinaux.

Proposition

SoientEetFdeux ensembles finis. On a :Il existe une application injective deEdansFsi et seulement si Card(E)Card(F).Il existe une application surjective deEdansFsi et seulement si Card(E)Card(F).Il existe une application bijective deEdansFsi et seulement si Card(E) =Card(F).Cardinalité des ensembles finisCardinal d"un ensemble fini4 / 23

Principe des tiroirs

Principe des tiroirs

SoientEetFdeux ensembles finis non vides etf:E!Fune application. SiCard(E)>Card(F)alors il existex1;x22Etels quef(x1) =f(x2).Nombre moyen de cheveux : 150000

Nombre d"habitant à Paris : 2,2 million

Il y a au moins deux personnes à Paris qui ont exactement le même nombre de cheveux.Principe des tiroirs généralisé SoientEetFdeux ensembles finis non vides etf:E!Fune application. SiCard(E)>kCard(F)aveck2?alors il existe une valeur defqui est répétée au moinsk+1 fois.Cardinalité des ensembles finisPrincipe des tiroirs5 / 23

Principe des tiroirs

Principe des tiroirs

SoientEetFdeux ensembles finis non vides etf:E!Fune application. SiCard(E)>Card(F)alors il existex1;x22Etels quef(x1) =f(x2).Nombre moyen de cheveux : 150000

Nombre d"habitant à Paris : 2,2 million

Il y a au moins deux personnes à Paris qui ont exactement le même nombre de cheveux.Principe des tiroirs généralisé SoientEetFdeux ensembles finis non vides etf:E!Fune application. SiCard(E)>kCard(F)aveck2?alors il existe une valeur defqui est répétée au moinsk+1 fois.Cardinalité des ensembles finisPrincipe des tiroirs5 / 23

Dénombrement

Dénombrement6 / 23

Pourquoi dénombrer un ensemble fini?

En informatique vous utiliserez la notion de dénombrement au moins dans

les deux cas de figures suivants :dénombrer le nombre de cas à analyser par un algorithme en vu

d"étudier sa complexité;lorsqu"on tire au hasard un élément dans un univers finis de manière équiprobable (c"est à dire que chaque élément à la même probabilité d"être tiré), la probabilité que cet élément soit dans l"ensembleA est

P(A) =Card(A)Card(

):DénombrementMotivations7 / 23 Dénombrement et opérations sur les ensembles Union

Card(A[B) =Card(A) +Card(B)Card(A\B)AB

abcd efgh DénombrementOpération sur les ensembles8 / 23 Dénombrement et opérations sur les ensembles Union

Card(A[B) =Card(A) +Card(B)Card(A\B)

Card(A[B[C) =Card(A) +Card(B) +Card(C)Card(A\B)

Card(A\C)Card(B\C) +Card(A\B\C)AB

C abcd efgh i jkl m DénombrementOpération sur les ensembles8 / 23 Dénombrement et opérations sur les ensembles

Produit cartésien

Card(AB) =Card(A)Card(B)

Card(A1 An) =Card(A1) Card(An)a

1a 2a 3a

4(a1;b1)(a1;b2)(a1;b3)(a2;b1)(a2;b2)(a2;b3)(a3;b1)(a3;b2)(a3;b3)(a4;b1)(a4;b2)(a4;b3)A=fa1;a2;a3;a4g,B=fb1;b2;b3g,Card(AB) =43=12DénombrementOpération sur les ensembles9 / 23

Dénombrement et opérations sur les ensembles

Passage au complémentaire

Card €A

Š=Card(

)Card(A)DénombrementOpération sur les ensembles10 / 23

Arrangement

Permutation denélémentsNombre de façon de rangernobjets dans l"ordre. n! =n(n1)(n2) 21Examples :

DénombrementArrangement11 / 23

Arrangement

Permutation denélémentsNombre de façon de rangernobjets dans l"ordre. n! =n(n1)(n2) 21Examples : Voici les 4! =24 permutations de quatre éléments distincta,b,cetd: abcd abdc acbd acdb adbc adcb bacd badc bcad bcda bdac bdca cabd cadb cbad cdba cdab cdba dabc dacb dbac dbca dcab dcba

DénombrementArrangement11 / 23

Arrangement

Permutation denélémentsNombre de façon de rangernobjets dans l"ordre. n! =n(n1)(n2) 21Examples : Voici les 4! =24 permutations de quatre éléments distincta,b,cetd: abcd abdc acbd acdb adbc adcb bacd badc bcad bcda bdac bdca cabd cadb cbad cdba cdab cdba dabc dacb dbac dbca dcab dcba

De combien de façons pouvez-vous ranger 10 livres sur une étagère?DénombrementArrangement11 / 23

Arrangement

Permutation denélémentsNombre de façon de rangernobjets dans l"ordre. n! =n(n1)(n2) 21Examples : Voici les 4! =24 permutations de quatre éléments distincta,b,cetd: abcd abdc acbd acdb adbc adcb bacd badc bcad bcda bdac bdca cabd cadb cbad cdba cdab cdba dabc dacb dbac dbca dcab dcba De combien de façons pouvez-vous ranger 10 livres sur une étagère?

10! =3628800DénombrementArrangement11 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples :

DénombrementArrangement12 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples : LesA34=4332=24 arrangements de 3 éléments choisis parmia,b,c,d: abc abd acb acd adb adc bac bad bca bcd bda bdc cab cad cba cdb cda cdb dab dac dba dbc dca dcb

DénombrementArrangement12 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples :

Quinze chevaux participes à une course, le nombre de tiercé est :DénombrementArrangement12 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples : Quinze chevaux participes à une course, le nombre de tiercé est : A

315=151413DénombrementArrangement12 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples : Quinze chevaux participes à une course, le nombre de tiercé est : A

315=151413

Nombre d"injection deE=f1;2;3gdansF=f1;2;:::;15g:DénombrementArrangement12 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples : Quinze chevaux participes à une course, le nombre de tiercé est : A

315=151413

Nombre d"injection deE=f1;2;3gdansF=f1;2;:::;15g:

A

315=151413DénombrementArrangement12 / 23

Arrangement

Arrangement depéléments parminavec répétition :Nombre de listes ordonnées depéléments parmin, mais on s"autorise des

répétitions éventuelles des éléments n pExample : Les 3

2=9 arrangements avec répétitions de 2 éléments parmia,b,c:

aa ab ac ba bb bc ca cb ccProposition Le cardinal de l"ensemble des applications deEdansF, notéFE, est : Card €FEŠ=Card(F)Card(E)PropositionLe cardinal de l"ensemble des parties d"un ensembleEfini est : Card(P(E)) =2Card(E)DénombrementArrangement13 / 23

Arrangement

Arrangement depéléments parminavec répétition :Nombre de listes ordonnées depéléments parmin, mais on s"autorise des

répétitions éventuelles des éléments n pExample :

Raymond Queneau a écrit un ouvrage inti-

tuléCent mille milliards de poèmes. Il est composé de 10 pages contenant chacune 14 vers. Le lecteur peut composer son propre poème de 14 vers en prenant le premier vers de l"une des 10 pages puis le deuxième vers de l"une des 10 pages et ainsi de suite jusqu"au quatorzième vers.Proposition Le cardinal de l"ensemble des applications deEdansF, notéFE, est : Card

€FEŠ=Card(F)Card(E)

Proposition

Le cardinal de l"ensemble des parties d"un ensembleEfini est : Card(P(E)) =2Card(E)DénombrementArrangement13 / 23

Arrangement

Arrangement depéléments parminavec répétition :Nombre de listes ordonnées depéléments parmin, mais on s"autorise des

répétitions éventuelles des éléments n pProposition Le cardinal de l"ensemble des applications deEdansF, notéFE, est : Cardquotesdbs_dbs29.pdfusesText_35
[PDF] cardinal de l ensemble des parties d un ensemble

[PDF] formule cardinal probabilité

[PDF] comment calculer cardinal avec calculatrice

[PDF] intersection probabilité formule

[PDF] comment calculer p(a)

[PDF] diviser des puissances de 10

[PDF] méthode de horner factorisation d'un polynôme

[PDF] méthode de horner exercices

[PDF] methode de horner pdf

[PDF] methode de horner algorithme

[PDF] horner method

[PDF] méthode de horner exercice corrigé

[PDF] schema de horner

[PDF] algorithme de horner python

[PDF] seuil de rentabilité cours pdf