[PDF] Structures moléculaires et spectres de RMN - Corrigé -





Previous PDF Next PDF



Contrôle des Connaissances de Spectroscopie Durée 1 h

6 nov. 2003 Licence Professionnelle : Industrie Chimique et ... indiquant sur les spectres l'attribution des signaux RMN et les absorptions IR ...



! Licence!Sciences!et!Techniques!–!L2! Techniques

23 mars 2016 Exercice!1! Attribuer!à!chaque!donnée!RMN!1H!le!composé!correspondant!(cocher!la!bonne!réponse).! ! ! 1.1)!RMN!1H!:!?!119!ppm!(singulet)



Fiche professeur Lanalyse spectrale : spectroscopies IR et RMN

Spectroscopie IR Spectroscopie RMN. Résumé : Les spectroscopies IR et RMN sont très utilisées dans les laboratoires comme outils d'analyse d'un milieu 



Structures moléculaires et spectres de RMN - Corrigé -

Cette molécule présente 4 groupes de protons équivalents donc le spectre de RMN contiendra 4 signaux. Le proton de la fonction aldéhyde (-H) a un 



Licence Sciences et Techniques – L2 Techniques spectroscopiques

29 mars 2013 Exercice 1 (15 min) ... Exercice 3 / Composé A (15 min) ... 4) Interpréter le spectre RMN 1H (attribution et multiplicité des différents ...



Exercice 1(e3a PC 2017) : étude dun spectre de RMN

3 avr. 2020 Le spectre RMN du proton du composé P obtenu présente les signaux suivants : ... Exercice 2 (BCPST Agro-Véto 2019) :.



Licence Sciences et Techniques – L2 Techniques spectroscopiques

3 avr. 2021 Document fourni : les tables de spectroscopie infrarouge et RMN 1H – Répondre sur le sujet. Nom : Prénom : Exercice 1 / RMN 1H.



Thème C : Constitution et cohésion de la matière TD O4

Détermination de structures à l'aide de spectres IR et RMN Exercice 3 : Interprétation de spectres IR ... Exercice 5 : Analyse d'un spectre RMN H.



Licence Sciences et Techniques – L2 Techniques spectroscopiques

19 mars 2019 Exercice 2 (3 points). Le spectre RMN 1H de la molécule A de formule brute C6H12O est donné ci-après. Interpréter le spectre.



Licence Sciences et Techniques – L2 Techniques spectroscopiques

1 mars 2017 Document fourni : les tables de spectroscopie infrarouge et RMN 1H – Répondre sur le sujet. Nom : Prénom : Exercice 1 (4 points).

1 Structures moléculaires et spectres de RMN - Corrigé - 1. Protons équivalents H Application : Pour chaque molécule citée ci-dessous, dénombrer les groupes de protons chimiquement équivalents. Ethane H

3 CCH 3

1 groupe de protons Propane H

3 C H 2 C CH 3

2 groupes de protons Hydroxybenzène HC

HC C H CH C H C OH

4 groupes de protons 3-chlorophénylméthanal HC

HC C CH C H C Cl C H O

5 groupes de protons Cyclohexène H

2 C H 2 C C H 2 CH CH H 2 C

3 groupes de protons Ethène CC

H H H H

1 groupe de protons (Z)-1,2-dichloroéthène CC

H Cl H Cl

1 groupe de protons (E)-1-chloropropène CC

Cl CH 3 H H

3 groupes de protons

2 3. Spectres de RMN H

C C O C CH 3 H H

Cette molécule présente 4 groupes de protons équivalents, donc le spectre de RMN contiendra 4 signaux. Le proton de la fonction aldéhyde (-H) a un déplacement caractéristique à 9,5-10 ppm. Les deux protons éthyléniques (-H et -H) ont des déplacements chimiques caractéristiques à 4,5-6,5 ppm. On peut donc conclure qu'il s'agit du spectre de RMN C. HC

C C H C CH C OH O 2 NNO 2

Cette molécule présente 3 groupes de protons équivalents, donc le spectre de RMN sera composé de 3 signaux. Les protons du cycle benzylique (-H et -H) ont un déplacement caractéristique à 6,5-8 ppm. On peut donc conclure qu'il s'agit du spectre de RMN A. H

3 C C O O CH 3

Cette molécule présente 2 groupes de protons équivalents, donc le spectre de RMN sera composé de 2 signaux.

3 H Application : C5H13N La courbe d'intégration a une hauteur h = 13,0 ; comme la molécule possède 13 protons, on en déduit l'échelle verticale de la courbe d'intégration : 1 proton <-> 1,0 : N

CH 2 CH 3 CH 2 CH 3 CH 3

3 groupes de protons différents : le spectre de RMN de cette molécule est composé de 3 signaux avec une courbe d'intégration qui augmenterait de 3,0 , 4,0 et 6,0. NH

2 CH 2 C CH 3 CH 3 CH 3

3 groupes de protons différents : le spectre de RMN de cette molécule est composé de 3 signaux avec une courbe d'intégration qui augmenterait de 2,0 , 2,0 et 9,0. N

H CCH 3 CH 3 CH 3 CH 3

3 groupes de protons différents : le spectre de RMN de cette molécule est composé de 3 signaux avec une courbe d'intégration qui augmenterait de 3,0 , 1,0 et 9,0. Il s'agit donc de la molécule qui correspond au spectre ci-dessus. N

CHCH 3 CH 3 CH 3 CH 3

3 groupes de protons différents : le spectre de RMN de cette molécule est composé de 3 signaux avec une courbe d'intégration qui augmenterait de 6,0 , 1,0 et 6,0. 3,0  3H 1,0  1H 9,0  9H

4 4. Notion de couplage H Application: a- Remplir le tableau suivant : CH3-CH2-CH2-OH Cette molécule est constituée de 8 protons. Groupe de protons équivalents Nombre de voisins Multiplicité Déplacement chimique (ppm) CH3- 2 triplet (2 + 1) 0,9 -CH2- 5 (3 + 2) sextuplet (5 + 1) 1,6 -CH2- 2 triplet (2 + 1) 3,6 -OH 0 singulet (0 + 1) 2,4 b- En prenant pour échelle verticale : 1 proton <-> 0,25 2H  0,50 1H  0,25 2H  0,50 3H  0,75

5 5. Analyse qualitative a- C

H 2 CHH 3 C CH 3 O CH 3

Déplacement chimique (ppm) Intégration Multiplicité Nombre de voisins (multiplicité -1) Groupe de protons équivalents 3,35 3 H singulet 0 -CH3 3,00 1 H sextuplet 5 -CH- 1,45 2 H quintuplet 4 -CH2- 1,20 3 H doublet 1 -CH3 0,90 3 H triplet 2 -CH3 b- H

3 C H 2 C C H 2 O CH CH 3 CH 3

Déplacement chimique (ppm) Intégration Multiplicité Nombre de voisins Groupe de protons équivalents 3,40 2 H triplet 2 -CH2- 3,20 1 H heptuplet 6 -CH- 1,50 2 H sextuplet 5 -CH2- 1,20 6 H doublet 1 2 x -CH3 0,95 3 H triplet 2 -CH3

6 6. Analyse structurale a- Propan-1-ol H

3 C H 2 C C H 2 OH

L'alcool primaire est constitué de 4 groupes de protons équivalents, il correspond au premier spectre. Groupe de protons équivalents Intégration Nombre de voisins Multiplicité δ (ppm) -CH3 3 H 2 triplet 0,95 -CH2- 2 H 5 sextuplet 1,60 -CH2- 2 H 2 triplet 3,60 -OH 1 H 0 singulet 2,30 Propan-2-ol H

3 C CH CH 3 OH

Groupe de protons équ valents Intégration Nombre de voisins Multiplicité δ (ppm) 2 x -CH3 6 H 1 singulet 2,15 -CH- 1 H 6 heptuplet 4,00 -OH 1 H 0 singulet 1,20 b- CH

CH C H CH C C H CH 2 OH CH CH C H CH C C H C H O

Oxydation

La réaction s'est bien déroulée car le spectre de RMN du produit de la synthèse est bien celui de l'aldéhyde benzoïque (benzaldéhyde). Les deux éléments qui permettent de justifier cette réponse sont : - Le signal à δ = 10,0 ppm est caractéristique d'un proton d'une fonction aldéhyde (singulet d'intégration 1 H). - Le spectre de RMN présente 4 groupes de protons équivalents (dont 3 qui sont aromatiques) ; le spectre de l'alcool en présenterait 5 (dont 3 aromatiques).

7 c- Lors de la substitution électrophile aromatique par un groupe nitro (-NO2) sur le toluène, le groupe nitro peut se fixer en position 2, 3 ou 4 pour donner les composés suivants. HC

C C H CH CH H C H 3 C C C C H CH CH H C H 3 C HC C C H CH CH C H 3 C HC C C H CH C H C H 3 C O 2 N NO 2 NO 2 toluène

2-nitrotoluène

quotesdbs_dbs1.pdfusesText_1
[PDF] exercice ru 486

[PDF] exercice salaire brut

[PDF] exercice satellite terminale s

[PDF] exercice saut en hauteur

[PDF] exercice saut en longueur college

[PDF] exercice savate boxe francaise

[PDF] exercice schéma narratif 6ème francais facile

[PDF] exercice section de cube terminale s

[PDF] exercice sécurité informatique

[PDF] exercice simplexe minimisation

[PDF] exercice simplification d'équation logique

[PDF] exercice site donneur et accepteur d'électrons

[PDF] exercice solution espace vectoriel

[PDF] exercice son g et j ce1

[PDF] exercice spé maths terminale es type bac