[PDF] Chapitre 3 Méthode du simplexe





Previous PDF Next PDF



Chapitre 3 Méthode du simplexe

Pour un problème de minimisation on modifie le critère en choissisant l'indice j tel que cj = min{ci



TD 2 : Simplexe et PLNE Exercice 1

7 déc. 2014 Exercice 1. Décembre 2014. RCP104 – Optimisation en Informatique. 2. Soit un problème de minimisation pour lequel on a commencé l'arborescence.



OPTI1 Exercice 1. PLNE en minimisation - Procédure arborescente

Exercice 1. PLNE en minimisation - Procédure arborescente et coupes de résout la relaxation continue par l'algorithme primal du simplexe. On trouve ...



Recherche opérationnelle

2.2.5 Utilisation de la méthode du simplexe dans un probl`eme de minimisation . . . . . . . Reprenons l'exercice 1 et le cas de l'entreprise Bonvin (1.) mais ...



Exercice 1.2.1. Résoudre par le simplexe Max x1 + 2x2 sous −3x1

2) Tableau du simplexe (forme canonique !) x1 x2 x3 x4 x5. z b. -1 -2 0. 0. 0 -1 0. -3 



TD 7 : Exercice corrigé Algorithme du simplexe Méthode des deux

Pour cela nous allons appliquer la phase I de la méthode des deux phases en espérant une solution de base réalisable optimale qui serait la S.B.R. de.



SOLUTIONNAIRE : DUAL EXERCICES 1 Formulation du dual

Le PPL donne comme fonction objectif à minimiser : Cela provient du fait que. Excel dans son algorithme du simplexe utilise une construction du dual directe ...



- Exercices de TD - 1 Modélisation.

Le probl`eme consiste `a minimiser la date d'arrivée de la derni`ere des 10 personnes. 4 Simplexe en une phase. - Exercice 34 - Résoudre par la méthode du ...



FSJES-AC RECHERCHE OPERATIONNELLE Semestre 6 Filière

III – Méthode du simplexe « MINIMISATION ». On procédera à l'illustration de EXERCICE : N° 10 - Résolution graphique – résolution simplexe - dualité. Une ...



Correction du Contrôle Continu no 1

Exercice 1 : On consid`ere le probl`eme d'optimisation suivant : (PI) maximiser z = 5x1 + 2x2 sous. 2x1 + x2 ≤ 70 x1 ≤ 30 x1 + x2 ...



Chapitre 3 Méthode du simplexe

Le principe de la méthode du simplexe est d'éviter de calculer tous les sommets. Pour un problème de minimisation on modifie le.



TD 7 : Exercice corrigé Algorithme du simplexe Méthode des deux

Pour cela nous allons appliquer la phase I de la méthode des deux phases en espérant une solution de base réalisable optimale qui serait la S.B.R. de.



Exercice 1.2.1. Résoudre par le simplexe Max x1 + 2x2 sous ?3x1

2) Tableau du simplexe (forme canonique !) x1 x2 x3 x4 x5. z b. -1 -2 0. 0. 0 -1 0. -3 



1 Programmation linéaire

Document 4 : Corrigé des exercices d'optimisation linéaire. 1 Programmation linéaire Le tableau de départ pour la méthode du simplexe est donc :.



SOLUTIONNAIRE : DUAL EXERCICES 1 Formulation du dual

Le nombre de contraintes dans le dual est égal au nombre de variables dans le primal : il y a deux contraintes. DUAL : Minimiser w = 8y1 + 6y2 + 2y3.



TD 2 : Simplexe et PLNE Exercice 1

Dec 7 2014 TD 2 : Simplexe et PLNE. Exercice 1. Décembre 2014. RCP104 – Optimisation en Informatique. 2. Soit un problème de minimisation pour lequel ...



Livret dexercices

x y ? 0. Exercice 13. Résoudre les programmes linéaires suivants graphiquement et par la méthode du simplexe. (a) minimiser 2x + y.



- Exercices de TD - 1 Modélisation.

Maximiser le gain de l'année par la méthode du simplexe. consiste `a minimiser la date d'arrivée de la derni`ere des 10 personnes.





(Microsoft PowerPoint - 2_Meth_Simplexe_Analyse [Mode de

Puisque nous cherchons à minimiser z il est avantageux d'augmenter la On peut démontrer que la méthode du simplexe circule autour du.

Chapitre 3

Méthode du simplexe

Comme toujours, on suppose queAune matrice de formatmnetb2Rm. On notera les colonnes deApar[a1;a2;:::;an]. Aussi, on fera l"hypothèse que le rang de la matriceAest

égal à m.

Selon le chapitre précédent, nous savons que la solution optimale du problème d"optimisation

linéairemaxz=ctx; Ax=b; x0:(3.1) se trouve en un sommet de l"ensemble convexe des solutions admissiblesK=fx0jAx= bg. De plus, nous savons que les sommets sont étroitement reliés aux solutions de base admis- sibles. Concrètement, cela signifie que si on choisit une liste de m variables dites de base B=fxj1;xj2;:::;xjmgassociées à des colonnesfaj1;aj2;:::;ajmgqui forment une base de l"espace-colonne, on peut calculer l"unique solution de bases du système Ax B=b en imposant que les variables hors-basexi= 0pour tous lesi6=j1;j2;:::;jm. SixB0, la

solution est admissible et sera appellée solution de base admissible ou réalisable. D"après le

chapitre précédent, la solution de basexBcorrespond à un sommet deK. Par conséquent, il suffit de calculer tous les sommets deKpour trouver la solution optimale.

Mais le nombre de sommets est de l"ordre

n!m!(nm)!ce qui est beaucoup trop pour desnetm relativement grands. Le principe de la méthode du simplexe est d"éviter de calculer tous les sommets. A partir d"un sommet donné, la méthode calculera une suite de sommets adjacents l"un par rapport au précédent et qui améliore la fonction objective.

3.1 Solutions de base adjacentes

Définition

3.1.1 Deux sommetsxetysont dits adjacents si les variables de base ne

diffèrent que d"un seul élément. 1

2CHAPITRE 3. MÉTHODE DU SIMPLEXE

Reprenons le problème modèle du premier chapitre écrit sous la forme canonique maxz= 5x1+ 4x2 x

1+x3= 6

x

1=4 +x2+x4= 6

3x1+ 2x2+x5= 22

x

1;x2;x3;x4;x50

Le sommetx= (4;5;2;0;0)correspond aux variables de basefx1;x2;x3g. De même, le sommety= (6;2;0;2:5;0)est associé aux variables de basefx1;x2;x4g. Les deux sommets sont adjacents ce qui est conforme au graphique de l"ensembleKprojeté dansR2.

Le système s"écrit

2 6

641 0 1 0 0

1=4 1 0 1 0

3 2 0 0 13

7 752
6 6664x
1 x 2 x 3 x 4 x 53
7

7775=2

6 646
6 223
7 75
Pour calculer la solution de base(4;5;2;0;0), il suffit d"extraire les 3 colonnes de la matriceA

et de résoudre le système carré par la méthode d"élimination de Gauss. Toutefois, lorsque que

l"on voudra calculer la nouvelle solution de base(6;2;0;2:5;0), il faudra recommencer l"éli- mination de Gauss avec les nouvelles colonnes de base. Il est plus avantageux de poursuivre élimination de Gauss à partir du premier calcul.

Voici un exemple de calcul.

a)

En premier, on forme la matrice augmen tée

2 6

641 0 1 0 0 6

1=4 1 0 1 0 6

3 2 0 0 1 223

7 75
b) On applique l"élimination de Gauss-Jordan p ourles v ariablesde base fx1;x2;x3g. 2 6

641 0 04=5 2=5 4

0 1 0 6=51=10 5

0 0 1 4=52=5 23

7 75
Donc x

1= 4 + 4=5x42=5x5

x

2= 56=5x4+ 1=10x5

x

3= 24=5x4+ 2=5x5

En posant les variables hors-basesx4=x5= 0, on obtient bien la solution de base x= (4;5;2;0;0).

3.2. MÉTHODE DU SIMPLEXE : PHASE II3

c) Main tenant,on désire calculer la solution de base adjacen tel iéesaux v ariablesd ebase fx1;x2;x4g. Pour cela, on poursuit l"élimination de Gauss-Jordan à partir du pivot a 3;42 6

641 0 1 0 0 6

0 13=2 0 1=2 2

0 0 5=4 11=2 5=23

7 75:
Donc x

1= 6x3

x

2= 2 + 3=2x31=2x5

x

4= 5=25=4x3+ 1=2x5

En posant les variables hors-basesx3=x5= 0, on obtient bien la solution de base y= (6;2;0;2:5;0). d) P oursuivonsà u nautre sommet adjacen tz= (6;0;0;4:5;4)dont les variables de base sontfx1;x4;x5g. Ce sommet est adjacent àymais pas àx. Poursuivons l"élimination de Gauss-Jordan à partir du pivota2;5 2 6

641 0 1 0 0 6

0 23 0 1 4

0 11=4 1 0 9=23

7 75:

On obtient les relations

x

1= 6x3

x

5= 42x2+ 3x3

x

4= 9=2x2+ 1=4x3

En posant les variables hors-basesx2=x3= 0, on obtient bien la solution de base z= (6;0;0;4:5;4). L"opération décrite ci-dessus est aussi connue sous le nom de pivotement. Cette stratégie sera à la base de la méthode du simplexe.

3.2 Méthode du simplexe : Phase II

Dans cette section, nous allons présenter la Phase II de la méthode du simplexe. La Phase

I qui sert plus à initialiser la Phase II, sera aborder plus tard. Cette phase s"applique à des

problèmes du type maxz=ptx; Cxb; x0:ouminz=ptx; Cxb; x0:(3.2)

4CHAPITRE 3. MÉTHODE DU SIMPLEXE

oùCest une matrice de formatmn. On fera l"hypothèse queb0. Cette supposition est cruciale pour la Phase II. Ceci garantie que02K=fx0jCxbg. De plus, nous savons que le point0est un sommet. Ce point servira de point de départ de l"algorithme du simplexe. En gros, l"algorithme va pivoter autour de ce point pour trouver un meilleur sommet. On poursuit l"algorithme jusqu"à l"obtention de la solution optimale.

La méthode débute avec la forme canonique du problème (3.2) que l"on écrira sous la forme

maxz=ctx; Ax=b; x0:(3.3) Attention, nous avons inclus les variables d"écart dans la liste des variables, i.e.x2Rm+n.

La matriceAetcsont données par

A= [C I]c=p

0

L"idée de base de la méthode du simplexe consiste à appliquer l"élimination de Gauss-Jordan

à partir du système augmenté obtenu en ajoutant au systèmeAx=bla relation linéaire z=ctxAx=b; c txz= 0 Ce système peut s"écrire sous la forme matricielle A0 c t1 x z =b 0

Nous allons illustrer la méthode sur l"exemple

maxz=x1+ 2x2 sous les contraintes 8< :2x1+x22; x

1+ 3x23;

x

1;x20:

Au préalable, on écrit le problème sous la forme canonique maxz=x1+ 2x2 sous les contraintes 8< :2x1+x2+x3= 2; x

1+ 3x2+x4= 3;

x

1;x2;x3;x40:

Voici les étapes de la méthode du simplexe.

3.2. MÉTHODE DU SIMPLEXE : PHASE II5

0.

I nitialisation

On choisit la solution de base admissible(0;0;2;3)comme point de départ de l"algo- rithme. Les variables de base sontfx3;x4get les variables hors-base sontfx1;x2g. Ce choix est toujours possible sib0.

On forme le tableau initialT.

2 6

642 1 1 0 0 2

1 3 0 1 0 3

1 2 0 01 03

7 75
1.

Choix de la colonne de piv ot

On doit aller vers un sommet adjacent pour lequel la valeur de la fonction objectivez en ce sommet est supérieure. Pour cela, on choisira la variablexiqui fera augmenter le plus rapidementz. C"est-à-dire que l"on choisit l"indiceiqui maximise@z@x i=ci>0. Dans notre cas, la fonctionzvarie plus rapidement en fonction de la variablex2. Donc, on choisit la deuxième colonne comme colonne de pivot. La variablex2entre dans la base mais une variable doit sortir. Remarque 3.2.1Si tous lesci0, la fonction objectivezne peut augmenter davantage. Donc nous avons trouver la solution optimale et l"algorithme se termine à cette étape. 2.

Choix de la lign ede piv ot

Quels sont les sommets adjacents de disponible et ayant la variablex2? Il y a 2 possibilités :fx2;x3getfx2;x4g. Essayons le choixfx2;x4g. Donc,x3quitte la base. La solution de base s"obtient à l"aide de l"élimination de Gauss-Jordan à partir du pivota12. On obtient : 2 6

642 1 1 0 0 2

5 03 1 03

3 02 0143

7 75
et la nouvelle solution de base sera(0;2;0;3)qui n"est pas admissible! Essayons de nouveau avecfx2;x3g. Donc,x4quitte la base. La solution de base s"obtient à l"aide de l"élimination de Gauss-Jordan à partir du pivota22. On obtient : 2 6

645=3 0 11=3 0 1

1=3 1 0 1=3 0 1

1=3 0 02=3123

7 75
et la nouvelle solution de base serax= (0;1;1;0)qui est admissible.

6CHAPITRE 3. MÉTHODE DU SIMPLEXE

On observe que la dernière ligne s"écrit

1=3x12=3x4z=2()z= 2 + 1=3x12=3x4:

Etant donné que les variable hors-base vérifiex1=x4= 0, on a quez= 2qui est la valeur de la fonction objective au sommetx= (0;1;1;0). 3.

On retourne à l"étap e1.

La dernière ligne du tableau~cxz=2fournie toujours la valeur dez= ~cx+ 2.

Même si les coefficients decont été modifiés, le principe de base de l"étape 1 s"applique.

C"est-à-dire que l"on choisit l"indiceiqui maximise@z@x i= ~ci>0. Dans notre cas, la fonctionzvarie plus rapidement en fonction de la variablex1. Donc, on choisit la première colonne comme colonne de pivot. La variablex1entre dans la base et une variable doit sortir. 4.

On retourne à l"étap e2.

Les sommets adjacents (ayant la variablex1de commun) sontfx1;x2getfx1;x3g.

Essayons avecfx1;x3g. On obtient :

2 6

6405 12 04

1 3 0 1 0 3

01 01133

7 75
et la nouvelle solution de base sera(3;2;4;0)qui n"est pas admissible! Essayons l"autre possibilité avecfx1;x2g. On obtient :2 6

641 0 3=51=5 0 3=5

0 11=5 2=5 0 4=5

0 01=53=51115

3 7 75
et la nouvelle solution de base sera(3=5;4=5;0;0)qui est admissible! 5.

On retourne à l"étap e1.

Dans ce cas, la solution sera optimale car les coefficients (pourx1àx4)de la dernière ligne sont tous négatifs ou nuls. On ne peut améliorer la solution en visitant d"autres sommets adjacents. La valeur dezest celle donnée au coin inférieure droit :z= 11=5 car il faut en changer le signe selon la relation~cxz=11=5. Remarque 3.2.2En premier lieu, on observe que l"avant dernière colonne est toujours inchangé. Cela est logique car cette colonne n"est jamais choisie comme colonne de pivot.

Son rôle est de fournir la valeur dez. Par conséquent, il est inutile d"écrire cette colonne.

Deuxièmement, il est évident que nous ne pouvons nous permettre d"explorer toutes les

possibilités pour le choix de la ligne de pivot à l"étape 2. Nous avons besoin d"un critère de

sélection.

Voici les étapes de la méthode du simplexe. Afin de ne pas nuire à la lisibilité du texte, nous

avons convenu de ne pas changer de notation pour la matriceAet des vecteursbetcen cours d"itération du simplexe. On notera parBle choix de la base à chaque étape du simplexe.

3.2. MÉTHODE DU SIMPLEXE : PHASE II7

Algorithme du simplexe

Étape 0 :

On forme le tableau initial Bx

1x2::: xnxn+1xn+2::: xn+mx

n+1a

11a12::: a1n1 0:::0b

1x n+2a

21a22::: a2n0 1:::0b

2. ..x n+ma m1am2::: a1n0 0:::1b mc

1c2::: cn0 0:::00

La base initiale de l"espace-colonne serafxn+1;xn+2;:::;xn+mg. Les autres variables seront égales à0ce qui correspond au point de départx= (0;0;:::;0).

Étape 1 :

On doit c hoisirla colonn ede piv ot.

Pour cela, on choisit l"indicejtel quel

c j= maxfcijci>0g: Si aucun choix est possible, on a atteint la solution optimale et l"algorithme se termine. Sinon, on passe à l"étape suivante. Pour un problème de minimisation, on modifie le critère en choissisant l"indicejtel que c j= minfcijci<0g:

Étape 2 :

On doit c hoisirla l ignede piv ot.

Pour cela, on choisit l"indice i en utilisant le critère du quotient b ia ij= minfbka kjjakj>0k= 1;2;:::;mg oùjest la colonne de pivot de l"étape 1. a) On applique la pro cédured"élimination de Gauss-Jordan autour du piv otsitué à l"intersection de la ligneiet de la colonnej. Ensuite, on divise la ligneipar le pivot pour le mettre égal à 1. b)

On retourne à l"étap e1 et on recommence.

Remarque 3.2.3Expliquons le critère du quotient. A une certaine itération du simplexe, nous disposons d"une solution de basexBlié à un choixBde variables de base. Ensuite, il s"agit de pivoter vers une solution de base adjacente qui doit être admissible. Le critère du quotient assure que la nouvelle solution de base sera admissible. En effet, notons parjla colonne de pivot de l"étape 1 et pariun choix quelconque de la ligne de pivot. A ce choix de la ligne de pivot correspond une variablexjiqui sortira de la base. Le critère du quotient impose queaij>0. La nouvelle base s"écrira~B=B[ fxjg n fxjig

et on doit imposer que la solution de base associée à~Bdoit être admissible. On procède à

8CHAPITRE 3. MÉTHODE DU SIMPLEXE

élimination de Gauss-Jordan autour du pivotaij. La ligneLkdu tableau du simplexe ( à cette itération) est modifiée par L kLia ija kj!Lk: Ceci modifie la dernière colonne du tableau du simplexe par b kakja ijb i0: qui doit être positif car sera la nouvelle solution de base.

Siakj>0, on obtient

b kakja ijb i=bka kjbia ij a kj0 bka kjbia ij8k akj>0:

Siakj= 0, on obtient

L kLia ija kj=Lk:

Donc, aucun changement.

Siakj<0, on a

bquotesdbs_dbs1.pdfusesText_1
[PDF] exercice simplification d'équation logique

[PDF] exercice site donneur et accepteur d'électrons

[PDF] exercice solution espace vectoriel

[PDF] exercice son g et j ce1

[PDF] exercice spé maths terminale es type bac

[PDF] exercice spé maths terminale s arithmétique

[PDF] exercice spé maths terminale s divisibilité

[PDF] exercice spé maths terminale s matrice

[PDF] exercice spé physique bac 2015

[PDF] exercice spectre d une étoile

[PDF] exercice spectre rmn corrigé

[PDF] exercice spectre seconde qcm

[PDF] exercice spectroscopie uv visible

[PDF] exercice sphère

[PDF] exercice sphere et boule 3eme pdf