[PDF] Ch. 5 : Echantillonnage estimation





Previous PDF Next PDF



Ch. 5 : Echantillonnage estimation

Calculer p(X = 24) en l'approximant par p(23.5 ? Y ? 24.5) o`u Y suit une loi normale de mêmes espérance et écart-type que X. 3. Page 4. 3 Estimation. On 



Traitement statistique des processus alpha-stable

Définition 3 Un estimateur du paramètre inconnu ? est une statistique ?? dont Exercice 21 : Test de l'espérance d'une loi normale d'écart-type inconnu.



La loi normale

Lorsque l'on suppose qu'une variable X suit le mod`ele de la loi normale Exemples de lois normales avec moyennes différentes même écart-type :.



B2 - Intervalle de confiance dune moyenne avec écart-type inconnu

`A partir de ce résultat on construit un intervalle de confiance aléatoire au seuil ? comme précédemment : On détermine t? `a partir de la loi normale centrée 



Comparaison des moyennes de deux populations normales décarts

P1 de moyenne m1 et d'écart-type 0'1 inconnus ; m2se fera donc aisément en utilisant la table de Ici loi normale pour la variable t --.



ESTIMATION DE PARAMÈTRES

Dans le cas d'un caractère quantitatif la moyenne m et l'écart-type ?pop d'une on considère que la variable aléatoire X suit une loi normale :.



Cours de Statistiques inférentielles

Son écart-type ?X est la racine positive de la variance. 1.2 Lois usuelles. 1.2.1 Loi normale ou loi de Gauss. Une variable aléatoire réelle X suit 



Estimations et intervalles de confiance

valeur inconnue du paramètre. Dans la suite nous nous intéresserons donc à deux types d'estimations : – soit une estimation donnée par valeur scalaire issue 



LOI NORMALE

- L'écart-type noté ?



CORRIGE DES EXERCICES : Estimation ponctuelle et estimation

X suit approximativement une loi normale temps ? inconnu est estimé par l'écart-type observé sans biais s*=23 mn. L'intervalle de confiance au niveau ...



[PDF] La loi normale

Pour chaque µ ? il existe une loi normale de moyenne µ et d'écart-type ? Exemples de lois normales avec moyennes différentes même écart-type :



[PDF] loi normale - Lycée Les Iscles

La variable aléatoire X suit une loi normale de moyenne m et d'écart type ? ( on note : X ? N(m;?) ) signifie que : L'ensemble des valeurs possibles de X 



[PDF] LOI NORMALE - maths et tiques

Pour une loi normale centrée réduite l'espérance est égale à 0 et l'écart-type est égal à 1 III Probabilité sur une loi normale



[PDF] 7 Loi normale ou loi de Laplace-Gauss - EM consulte

22 jui 2010 · Une variable suivant la loi normale centrée réduite est notée Z Si X est de moyenne ? et d'écart type ? suit une loi normale centrée réduite



[PDF] Loi normale - Probabilité

suppose que la variable aléatoire X suit la loi normale d'espérance 15 et d'écart-type ? inconnu Une valeur approchée au millième de ? pour que la 



[PDF] Statistiques

Son écart-type est ?X = ?Var(X) 1 2 1 Lois de v a finies déj`a connues Loi de Bernoulli de param`etre p notée b( 



[PDF] Traitement statistique des processus alpha-stable

Exercice 6 : Intervalle de confiance de l'espérance m d'une loi normale d'écart-type inconnu Un fabricant de piles électriques affirme que la durée de vie 



[PDF] Cours de Statistiques inférentielles

Son écart-type ?X est la racine positive de la variance 1 2 Lois usuelles 1 2 1 Loi normale ou loi de Gauss Une variable aléatoire réelle X suit une loi 



[PDF] B2 - Intervalle de confiance dune moyenne avec écart-type inconnu

`A partir de ce résultat on construit un intervalle de confiance aléatoire au seuil ? comme précédemment : On détermine t? `a partir de la loi normale centrée 



[PDF] Rappels sur les propriétés de la loi Normale - opsuniv-batna2dz

#Si la variance est inconnue un grand échantillon permet de déduire une valeur fiable pour la loi normale de même espérance et de même écart#type

  • Comment trouver l écart-type d'une loi normale ?

    On commence par standardiser la loi normale. On rappelle que si �� ? �� ? �� ; �� ? ? , alors �� = �� ? �� �� est la variable normale centrée réduite �� ? �� ? 0 ; 1 ? ? . On a �� ? �� ( 6 3 ; 1 4 4 ) . On rappelle que l'écart-type est égal à la racine carrée positive de la variance, donc �� = ? 1 4 4 = 1 2 .
  • Comment trouver MU et Sigma ?

    Espérance et écart-type
    Si une v.a. suit une loi normale N ( ? ; ? 2 ) , alors l'espérance de vaut E ( X ) = ? et sa variance vaut ² V ( x ) = ? ² et son écart-type ² ? ( X ) = ? ² .
  • Comment savoir si on peut utiliser la loi normale ?

    Elle peut être utilisée dans un grand nombre de situations, c'est ce qui la rend si utile. Lorsqu'un phénomène est influencé par de nombreux facteurs dont aucun n'est prépondérant les résultats des mesures de ce phénomène obéissent à une loi normale.
  • Pour une loi normale centrée réduite, l'espérance est égale à 0 et l'écart-type est égal à 1.
U.P.S. I.U.T. A, D´epartement d"Informatique Ann´ee 2008-2009

Ch. 5 : Echantillonnage, estimation

1 Echantillonnage et suites de variables al´eatoires.

Un´echantillonde taillenest une partie den´el´ements choisis al´eatoirement dans une populationP. On dit qu"il estnon exhaustiflorsque le tirage se fait avec remise,exhaustif dans le cas contraire. Des tirages avec remise forment des ´ev`enements ind´ependants : l"urne

n"est pas modifi´ee par le tirage. Si la population est tr`es grande ou infinie, on pourra toujours

consid´erer que le tirage est non exhaustif : le fait de remettre ou non l"´el´ement tir´e devient

sans importance. On suppose maintenant qu"on ´etudie un caract`ere statistique quantitatifCsurP. On consid`ere l"ensemble Ω ndes ´ev`enements : "tirage d"un ´echantillon de taillen". On obtient une suite de variables al´eatoiresX1,X2,...Xn, o`uXiest la valeur du caract`ereCsur le i-`eme

´el´ement de l"´echantillon tir´e.

Si le tirage est avec remise (ou si la population est tr`es grande par rapport `a l"´echantillon)

ces variablesXisont ind´ependantes et suivent toutes la mˆeme loi de probabilit´e, d"esp´erance

la moyenne deCet d"´ecart-type celui deC. A partir desnvariables al´eatoiresXi, on en construit de nouvelles, appel´ees "estimateurs". Par exemple, siXine prend que deux valeurs (pile/face, oui/non) cod´ees par 1, 0, on peut

compter le nombre de "pile" ou de "oui" dans l"´echantillon `a l"aide de la variable al´eatoire

"somme sur l"´echantillon" : S n=X1+X2+···Xn. On peut aussi, pour "estimer" la moyenne du caract`ere statistiqueC, consid´erer la variable al´eatoire "moyenne sur l"´echantillon" : M n=X1+X2+···Xn n. Pour estimer l"´ecart-type du caract`ere statistiqueCon consid`ere la variable al´eatoire : n-1=???? 1 n-1n i=1(Xi-Mn)2. Remarquer la pr´esence den-1 au lieu den: cet estimateur est "meilleur" que Σn(´ecart-

type de l"´echantillon) pour estimer l"´ecart-typeσde la population (voir le§3). Noter qu"on

a : Σ n-1=? n n-1Σn.

Comment ´evoluent ces variables lorsqu"on augmente la taille de l"´echantillon (n→ ∞)?

1

2 Les "th´eor`emes limites".

In´egalit´e de Bienaym´e-Tchebychev.SoitXune variable al´eatoire continue d"esp´erance

μet d"´ecart-typeσ. On veut mesurer la probabilit´e que les valeurs deXs"´ecartent de la valeur

moyenneμde plus qu"un intervalle donn´e par un param`etre positifλ. Pour toutλ >0 on a : p(|X-μ

Preuve- On poseY=X-μ

σ.On a :E(Y) = 0 etσ(Y) = 1 d"o`u,

1 =σ2(Y) =?

y2fY(y)dy |y|≥λy2fY(y)dy ≥λ2? |y|≥λf

Y(y)dy=λ2p(|Y| ≥λ),

d"o`u l"in´egalit´e en divisant parλ2. Pour une variable al´eatoire `a valeurs discr`etes, la preuve

est similaire : remplacer?y2fY(y)dypar? iy2ipi. Exercice 1.On lance 100 fois de suite une pi`ece. La variable al´eatoireX: nombre de "pile" obtenus suitB(100,1

2). En utilisant l"in´egalit´e de Bienaym´e-Tchebychev, minorer la probabilit´e

p(40< X <60)et comparer avec la valeur exacte donn´ee par la loi binomiale. Loi (faible) des grands nombres.On se place dans la situation d"un ´echantillonnage

de taillen, et donc d"une suite de variables al´eatoiresX1,...Xnind´ependantes, de mˆeme loi,

mˆeme esp´eranceμet mˆeme ´ecart-typeσ. SoitMn=1 n? iXila variable al´eatoire "moyenne d"un ´echantillon". On a, pour toutε >0 donn´e, p(|Mn-μ|< ε)≥1-σ2 nε2et en particulier limn→∞p(μ-ε < Mn< μ+ε) = 1. c"est-`a-dire :Mnprendra une valeur aussi proche qu"on veut deμ, avec une probabilit´e aussi proche qu"on veut de 1, `a condition de prendre la taillende l"´echantillon suffisamment grande. Preuve- Puisque les variablesXisuivent la mˆeme loi de param`etresμetσet sont ind´ependantes, on a

E(Mn) =nμ

n=μetσ(Mn) =? nσ2 n2=σ⎷n. D"apr`es l"in´egalit´e de Bienaym´e-Tchebychev appliqu´ee `aMnon a : p(|Mn-μ| 2

Choisissonsλtel queλσ

n

σ.On a :

nε2. On passe `a l"´ev`enement contraire pour obtenir l"´enonc´e de la loi. Th´eor`eme de la limite centr´ee.A partir de la variableMnpr´ec´edente on construit la variable centr´ee r´eduite : Z n=Mn-μ Rappelons que la loi de probabilit´e de chaqueXiet donc deMnet deZnest inconnue.

N´eanmoins on a (preuve admise) :

La loi de probabilit´e deZntend vers celle de la loi normale centr´ee r´eduiteN(0,1)lorsquen

tend vers l"infini. C"est-`a-dire : lim n→∞p(Zn< a) = Π(a). avecΠ(a) =p(Z < a)o`uZsuit la loi normale centr´ee r´eduite.

Rappelons Π(a) est le nombre donn´e par la table de la loi normale centr´ee r´eduite (`a nouveau

disponible en derni`ere page de ce document). Cas particulier : approximation d"une loi binomiale par uneloi normale.Si le caract`ere C ne prend que deux valeurs 1 et 0 (ou blanc/noir) en proportionpetq= 1-p, on

a vu queBn=X1+···+Xn(le nombre de "blanc" sur un ´echantillon den´el´ements) suivait

la loi binomialeB(n,p), d"esp´eranceμ=npet d"´ecart-typeσ=⎷ npq. D"apr`es le th´eor`eme pr´ec´edent, pourngrand (dans la pratique,np >15etnq >15),Zn= B n-μ

σsuit approximativement la loi normaleN(0,1).

Utilisation pratique : correction de continuit´e.La loi binomiale ´etant discr`ete et la loi normale

´etant continue, on ne peut approximerp(Zn=k) parp(Z=k) o`uZsuit la loi normale centr´ee r´eduite : en effet,p(Z=k) est toujours nul. On doit remplacerkpar l"intervalle ]k-1/2,k+ 1/2[ (On fait une "correction de continuit´e"). Exemple : Exercice 2.Xsuit la loi binomialeB(50,0.5). Calculerp(X= 24), en l"approximant par 3

3 Estimation.

On veut ´etudier les propri´et´es d"un caract`ereCd"une population `a partir de ses valeurs sur un ou plusieurs ´echantillons. Estimation ponctuelle.Pour estimer un param`etre deC(par exemple la moyenneμou

l"´ecart-typeσ),on choisit un ´echantillon particulieren(d"o`u l"appellation "ponctuelle"), et

on calcule la valeur de l"estimateur (Mn, Σn-1,...) sur cet ´echantillon :mn=Mn(en),σn-1= n-1(en). Le choix de l"estimateur en fonction du param`etre `a approcher est un probl`eme difficile : par exemple pourquoi choisir Σ n-1plutˆot que Σnpour estimer l"´ecart-type? Nous admettons ici que dans le cas des param`etresμouσ, les estimateursMnou Σn-1propos´es ici sont "les meilleurs possibles", ce qui signifie :

- ´etant donn´e une suite d"estimations ponctuelles sur des´echantillonsende taillen, on a :

lim nMn(en) =μ, limnΣn-1(en) =σ(l"estimation se rapproche du param`etre cherch´e lorsque la taille de l"´echantillon augmente); -E(Mn) =μetE(Σn-1) =σ. (Si on moyennise les estimations sur tous les ´echantillons de taillenon trouve le param`etre. L"estimateur est dit "sans biais"); - L"´ecart-type deMnet Σn-1est minimal (l"estimation ponctuelle varie le moins possible d"un

´echantillon `a un autre).

Estimation par intervalle de confiance.On ne cherche plus `a donner une valeur estim´ee la meilleure possible du param`etrex(moyenne, proportion, ´ecart-type...) mais un intervalle

de valeurs dans lequel la vraie valeur se trouve avec une probabilit´e donn´ee (le coefficient de

confiance; dans la pratique, 95%, 99%...). Si on ´ecrit le coefficient de confiance sous la forme

1-α,αest appel´e le "risque" (5%, 1%,...).On cherche donc[a,b]tel que

p(x?[a,b]) = 1-α. Estimation d"une moyenneμpar intervalle de confiance. On peut obtenir un "intervalle de confiance" [a,b] dans lequel une moyenneμse trouve avec un risque donn´e sous l"une des deux hypoth`eses suivantes :

i- le caract`ere statistique suit une distribution quelconque d"´ecart-type connuσ, et l"´echantillon

est grand (n≥30); ou ii- le caract`ere statistique suit une distribution normale d"´ecart-type connuσ; la taille de l"´echantillon est alors sans importance. SoitMnl"estimateur : "moyenne d"un ´echantillon de taillen." Nous savons que son esp´erance estμet son ´ecart-type estσ/⎷ n. On sait d"apr`es le th´eor`eme de la limite centr´ee :

T=Mn-μ

σ/⎷nsuit approximativement la loi normale centr´ee r´eduite. Sous l"hypoth`ese (ii-), on peut mˆeme enlever le mot "approximativement". On peut donc trouver `a l"aide de la table deN(0,1) le nombretαtel que p(|T|< tα) = 1-α. 4 Exemples classiques, `a v´erifier sur la table deN(0,1) `a l"aide de la formulep(|T|< tα) =

2Π(tα)-1 :

- siα= 5%,tα= 1,96 ; - siα= 1%,tα= 2,576; - siα= 0,1%,tα= 3,29. x3210,5 0 0,4 0,3 -1 0,2 0,1 -2 0 -3 Figure1 - Limites du seuil `a 5% sur la loi normale centr´ee r´eduite

On a :

p(|T|< tα) =p(-tαLa m´ethode est identique. On consid`ere la variable al´eatoirePnd´efinie sur l"ensemble des

´echantillons de taillen. Son esp´erance estpet son ´ecart-type? pq/n. On utilise `a nouveau le th´eor`eme de la limite centr´ee : Sinest suffisamment grand (dans la pratiquen≥3/pnqn), alors la variable al´eatoireT= (Pn-p)/? pq nsuit la loi normale centr´ee r´eduiteN(0,1).

On en d´eduitaetbcomme pr´ec´edemment : `a partir du nombretαtel quep(|T|< tα) = 1-α

obtenu sur la table deN(0,1), et une estimation ponctuellepndePnsur un ´echantillonen, on obtient l"intervalle de confiance [a,b] = [pn-tα? pq n, pn+tα? pq n]. Cependant, dans cette formulepetqrestent inconnus. On s"en sort de deux mani`eres : - par approximation ponctuelle : on remplacepetqparpnetqnconnus sur un ´echantillon.

On prend donc :

[a,b] = [pn-tα? pnqn n, pn+tα? pnqn n]. - par majoration : lorsquepest compris entre 0 et 1, le produitp(1-p) est plus petit que 1/4

(Exercice : le v´erifier avec l"´etude de la fonctionp?→p(1-p).) On majore donc l"intervalle

de confiance par : [a,b] = [pn-tα

2⎷n, pn+tα2⎷n].

Exercice 4.Lors d"un second tour `a une ´election pr´esidentielle, on veut faire un sondage sur 800 personnes pour connaitre la proportionpd"´electeurs votants pour le candidat A et q= 1-pvotants pour B. Le sondage donne A `a 48% et B `a 52%.

1- Quelle est l"intervalle de confiance (avec un risque d"erreur de 5%) autour de ces valeurs

donn´ees par le sondage?

2- Afin de pouvoir les d´epartager, on souhaite obtenir un intervalle de confiance de longueur

±1%, toujours avec un risque d"erreur de 5%. Quelle doit ˆetre lataillende l"´echantillon?

Test sur le chapitre 5

1. Enoncer la loi faible des grands nombres.

2. Enoncer le th´eor`eme de la limite centr´ee.

3. Etant donn´ee l"estimationmnd"une moyenneμsur un ´echantillon, donner la formule

de l"intervalle de confiance dans lequel se trouveμavec un risque de 1%. 6

Chapitre 5 : Travaux dirig´es

1. Une entreprise commercialise du sel fluor´e en sachets, avec la mention : "Poids net : 1

kg, fluorure de potassium : 250 mg/kg". (a) La machine de conditionnement est r´eglable avec un param`etrem(en grammes) de sorte que le poids moyen de produit emball´e soit demgrammes. La variable al´eatoireX, qui `a tout sachet associe le poids de son contenu suit alorsune loi normaleN(m,8) d"esp´erancemet d"´ecart-typeσ= 8 grammes. On veut que la probabilit´e que la quantit´e emball´ee d´epasse 1kg soit de 95%. Sur quelle valeur doit-on r´egler le param`etrem? (b) Une association de consommateurs veut v´erifier la teneuren fluorure de potassium. Elle se procure un ´echantillon de 100 sachets et confie `a un laboratoire la mesure du taux de fluorure de potassium sur cet ´echantillon. Les conclusions du laboratoire sont : Moyenne de l"´echantillon : 254 mg/kg, ´ecart-type de l"´echantillon : 20 mg/kg. i. On suppose qu"une variable al´eatoireZsuit la loi normale centr´ee r´eduite. D´etaillez le calcul montrant que le seuiltαtel quep(-tα< Z < tα) = 1-α vauttα= 2.575. ii. d´eterminer un intervalle de confiance autour de la moyenne observ´ee dans lequel la vraie moyenne se trouve avec un risque d"erreur de 1%. iii. Peut-on consid´erer que l"´etiquetage des sachets concernant cette teneur est correct? (Justifiez votre r´eponse).

2. Un quotidien publie la cote de popularit´e d"un chef de gouvernement :

Avril : 36 % d"opinions favorables;

Mai : 38% d"opinions favorables.

Le journaliste conclut : "la cote de popularit´e a augment´ee de 2%". Sachant que ces

proportions ont ´et´e ´etablies sur un ´echantillon de 1000personnes donner un intervalle

de confiance de ces valeurs au niveau de confiance 95%. Quelle est votre conclusion?

Travail personnel :

Une entreprise de camions dispose de 100 v´ehicules. Sur un ´echantillon de 30 jours, elle note le nombre

de camions en panne :

1. Calculer la moyenne et l"´ecart-type de cet ´echantillon.

2. En d´eduire une estimation ponctuelle de la moyenneμet de l"´ecart-typeσdu nombre de pannes sur

l"ensemble des journ´ees de l"ann´ee. (On utisera les estimateursMnet Σn-1du cours : ch 5,§1).

3. D´eterminer un intervalle de confiance pour cette moyenneμavec un coefficient de confiance de 95%.

7 Intégrale????de la Loi Normale Centrée Réduite??????. 1 8quotesdbs_dbs22.pdfusesText_28
[PDF] statistique excel

[PDF] formule de calcul excel pourcentage d'évolution

[PDF] graphique excel

[PDF] formule excel pourcentage d'augmentation

[PDF] calcul taux de croissance excel

[PDF] calcul pourcentage excel 2010

[PDF] calculer écart entre deux valeurs excel

[PDF] calcul cp fumées

[PDF] combustion stoechiométrique

[PDF] calculatrice ti 82 puissance de 10

[PDF] comment faire les puissances sur une calculatrice texas

[PDF] comment faire puissance sur calculatrice ti 82

[PDF] ecriture scientifique calculatrice casio

[PDF] touche puissance sur calculatrice iphone

[PDF] comment faire les puissances sur une calculatrice casio fx-92