[PDF] Mécanique Quantique 1 —– CORRIGÉ Séance dexercices 1 : États





Previous PDF Next PDF



Mécanique Quantique 1 CORRIGÉ Séance dexercices 4

Séance d'exercices 4 : oscillateur harmonique opérateurs d'echelle et champ électromagnétique quantifié. Exercice 1 â = 1. /. 2. (x + ip) ?.



Travaux Dirigés de Mécanique Quantique

TD 7 : Oscillateur harmonique – Produit tensoriel mécanique quantique quand n tend vers l'infini. ... Dans l'exercice on consid`ere : B = B uz.



polycopié de cours - matière: mécanique quantique ii

Le problème de l'oscillateur harmonique est très important en physique d'abord par ce qu'on peut résoudre l'équation de Schrödinger correspondante et plusieurs 



4 Oscillateur harmonique quantique

MP1 Janson de Sailly. Corrigés TD Mécanique quantique. Corrigé exercice 4 : Mécanique quantique. Valeur numérique de la constante de Planck :.



Mécanique Quantique 1 —– CORRIGÉ Séance dexercices 1 : États

La deuxième partie de ce document propose un exercice similaire mais sur l'oscillateur harmonique. Ceci n'a pas été vu en classe mais est lié à la matière du 



Mécanique Quantique TD n 6 : Oscillateur harmonique Exercice 1

Mécanique Quantique. TD n?6 : Oscillateur harmonique. Exercice 1: Etats cohérents. 1. Quelques rappels sur l' oscillateur harmonique.



Travaux dirigés

quantique. Illustration des postulats. Valeur moyenne d'une observable. Evolution dans le temps. Représentation {r}. II. L'oscillateur harmonique.



Mécanique Quantique III

extenso les corrigés des exercices et probl`emes proposés `a la fin de chaque chapitre de 7.4 Oscillateur harmonique traité en Mécanique analytique .



Physique Statistique Exercices de Travaux Dirigés

limites correspondant aux deux cas précédents. 3.5 Oscillateurs harmoniques classiques et quantiques. On consid`ere un syst`eme constitué de N oscillateurs 



PHQ434 : Mécanique quantique II

30 mai 2018 5. Postulats formels de la mécanique quantique. 6. Problèmes unidimensionnels : puits et barrières de potentiel oscillateur harmonique.

École polytechnique de Bruxelles PHYSH301/2016-2017

Mécanique Quantique 1 -- CORRIGÉ

La première partie de ce document donne la correction détaillée de la séance d"exercice 1 sur les

états liés du puits carré. La deuxième partie de ce document propose un exercice similaire mais sur

l"oscillateur harmonique. Ceci n"a pas été vu en classe, mais est lié à la matière du cours.

Séance d"exercices 1: États liés du puits carré.

PUITS CARRÉ INFINI EN 1 DIMENSION

Exercice a

Notez d"abord que le puits étant infini, il n"admet que des états liés!

À l"extérieur du puits, le potentiel étant infini, la fonction d"onde est nulle. Comme la fonction d"onde

doit être continue, on en déduit les conditions limites de la fonction d"onde à l"intérieur du puits :

(0) = (L) = 0 indépendante du temps, en une dimension, qui est donnée par : ~22m@ 2@x

2+V(x)

(x) =E (x) Comme le potentiel est nul, cela devient simplement ~22m@ 2@x

2 (x) =E (x)

ou encore, en posantk=p2mE=~, @2@x

2 (x) =k2 (x):

La solution de cette équation différentielle est donnée par des sinus et cosinus. Ainsi, de façon générale,

la solution est (x) =Asin(kx) +Bcos(kx): En utilisant les conditions limites mentionnées précédemment, on trouve (0) = 0)B= 0 (L) = 0)Asin(kL) = 0)kL=n oùnest un entier positif. Ainsi, (x) =Asin nxL 1 Pour trouver la valeur deAil reste à normaliser la fonction : Z L 0 j (x)j2dx=A2ZL 0 sin nxL dx =A2LZ 1 0 sin2(ny)dyoù on a poséy=x=L =A2LZ 1

01cos(2ny)2

dy =A2Ly2 sin(2ny)4n 1 0 =A2L2 Puisque la norme de la fonction d"onde vaut1on trouve queA=p2=Let donc n(x) =8 :q2 L sin n xL si0xL

0sinon

Notez quenreprésente ici le nombre quantique.

Exercice b

Puisque, de l"exercice précédent on tire quek=p2mE=~etkL=n, on en déduit facilement que les énergies propres du puits infini sont E n=k2~22m=n22~22mL2 . Puisquenest entier, on comprend ici que l"énergie est quantifiée.

Remarquez que si le puits carré est de profondeur finieV0, on a une solution (x)non nulle à l"extérieur

du puits, comme on le verra à l"exercice 3. Dans ce cas là, il y aura également un nombre fini d"états

liés.

PUITS CARRÉ INFINI EN 3 DIMENSIONS

Exercice a

~22m @2@x

2+ +@2@y

2+@2@z

2 +V(3)(x;y;z) (x;y;z) =E (x;y;z) En supposant que la solution a la forme (x;y;z) = 1(x) 2(y) 3(z), on trouve

2(y) 3(z)

~22m@

2 1(x)@x

2+V1(x) 1(x)

+ 1(x) 3(z) ~22m@

2 2(y)@y

2+V2(y) 2(y)

+ 1(x) 2(y) ~22m@

2 3(z)@z

2+V3(z) 3(z)

= 2(y) 3(z)(E1 1(x)) + 1(x) 3(z)(E2 2(y)) + 1(x) 2(y)(E3 3(z)) 2

où on a posé queE=E1+E2+E3. On a donc 3 fois un problème unidimensionnel qui se ramène en

fait au cas étudié à l"exercice1:~22m@ 2@x

2i+Vi(xi)

i(xi) =Ei i(xi) pour i=1,2,3. La solution générale dépend alors de trois nombres quantiquesn1,n2etn3: n1;n2;n3(x;y;z) =r8 L

1L2L3sin

n 1xL 1 sin n 2xL 2 sin n 3xL 3

Exercice b

En se basant également sur le résultat de l"exercice1, on trouve que les énergies liées sont :

E n1;n2;n3=2~22m n21L

21+n22L

22+n23L

23
Remarquez que dans ce cas-là, certaines dégénérescences sont possibles.

Exercice c

Ici, on cherche à calculer le nombre d"états quantiqueN(E0)dans la boîte dont l"énergie est inférieure

à une certaine valeurE0. On cherche doncN(E0)tel que n 21L

21+n22L

22+n23L

232mE0

2~2

On remarque que c"est comme calculer le nombre d"états à l"intérieur d"une sphère de rayon

R=p2mE0~

en sachant que la densité de points estL1L2L3(l"unité de longueur de la coordonnéeiestni=Li).

On approxime le résultat en oubliant que lesnisont entiers et donc il suffit de calculer le volume de

la sphère multiplié par sa densité. Par contre, il ne faut pas oublier que lesnine peuvent être que

positifs et donc on ne prend qu"un huitième du volume de la sphère. :

N(E0)18

volumedensité 18 43
(2mE0)3=2

3~3L1L2L3

43
p30L1L2L3h 3

où à la dernière ligne on a posé que~=h2etp0=p2mE0.p0représente l"impulsion d"une particule

de massemdont l"énergie cinétique estE0.

Ainsi, on remarque dans la dernière équation queL1L2L3représente le volume dans l"espace des

positions alors que4p30=3représente le volume dans l"espace des impulsions.

Dans une volume arbitraire de l"espace des phases, le nombre d"états quantiques indépendants est en

fait donné par

Nxyzpxpypzh

3 C"est comme si chaque état se trouvait dans une petit boîte de côtéh.

Lorsqu"il s"agit de fermions, cela revient simplement à compter le nombre de particules dans la boîte

jusqu"à une certaine énergie, puisqu"il n"y a qu"une seule particule par niveau (on ne peut pas mettre

plus d"un fermion par petite boîte). Notez également que l"on ne connaît par précisémentxetpà

l"intérieur de la petite boîte. 3

PUITS CARRÉ FINI EN 3 DIMENSIONS

Exercice a

H =E ,

~22mr2+V(r) (r) =E (r) où le laplacien en coordonnées sphérique est r 2=1r 2@@r r2@@r +1r 2

1sin@@

sin@@ +1sin 2@ 2@ 2! ~22mr2@@r r2@@r ~22mr2

1sin@@

sin@@ +1sin 2@ 2@ 2! +V(r)# (r;;) =E (r;;) En multipliant l"équation par2mr2, on peut rendre l"équation séparable : ~2@@r r2@@r ~2

1sin@@

sin@@ +1sin 2@ 2@ 2! + 2mr2V(r)# (r;;) = 2mr2E (r;;) ou encore ~2@@r r2@@r + 2mr2V(r)E# |{z} partie radiale (r;;) =~2

1sin@@

sin@@ +1sin 2@ 2@ 2! |{z} partie angulaire (r;;)

Exercice b

[energie] =[p2][2m]=[(~=longueur)2][2m]=~22ma2 où on utilise le fait quexp~pour trouver que l"unité depest celle de~=longueur. Notez qu"on veut rendrerégalement sans dimension. Pour ceci on définit une variabler0=r=aqui est sans dimension. Alors, @@r

0=a@@r

et@@r

0r02@@r

0=@@r r2@@r ~2@@r 0 r 02@@r 0 +2ma2r02V(r0)E# (r0;;) =~2

1sin@@

sin@@ +1sin 2@ 2@ 2! (r0;;) ou encore (en renommant r"=r) @@r r2@@r +2ma2~ 2 r

2V(r)E#

|{z} partie radiale (r;;) =

1sin@@

sin@@ +1sin 2@ 2@ 2! |{z} partie angulaire (r;;) @@r r2@@r +r2V(r)E# |{z} partie radiale (r;;) =

1sin@@

sin@@ +1sin 2@ 2@ 2! |{z} partie angulaire (r;;) 4

Exercice c

Posons (r;;) =r1ul(r)Yml(

@@r r2@@r +r2V(r)E# r

1ul(r)Yml(

1sin@@

sin@@ +1sin 2@ 2@ 2! r

1ul(r)Yml(

ou encore ru l(r)" @@r r2@@r +r2V(r)E# r

1ul(r) =1Y

ml(

1sin@@

sin@@ +1sin 2@ 2@ 2! Y ml( On remarque que la partie gauche de l"équation ne dépend que deralors que la dépendance de

la partie droite de l"équation est uniquement angulaire. Cela signifie donc que chacun des côté de

l"équation est égal à une constante. On choisi cette constante comme étantl(l+ 1). Bien sûr, ce

choix n"est pas arbitraire. Il vient du fait que l"équation

1sin@@

sin@@ +1sin 2@ 2@ 2! Y ml( ) =l(l+ 1)Yml( où

1sin@@

sin@@ +1sin 2@ 2@ 2! =L2 est bien connue et ses solutions sont les harmoniques sphériquesYlmoùlest le nombre quantique

azimutal etmle nombre quantique magnétique. Rappelez-vous qu"il y a une solution différente pour

chaque valeur demetl. Revenons maintenant à l"équation radiale qui devient ru l(r)" @@r r2@@r +r2V(r)E# r

1ul(r) =l(l+ 1)

@@r r2@@r u l(r)r +r2V(r)Eul(r)r =ul(r)r l(l+ 1) @@r r@@r ul(r)ul(r) +r2V(r)Eul(r)r =ul(r)r l(l+ 1) r@2@r

2ul(r) +rV(r)Eul(r) =ul(r)r

l(l+ 1) @2@r

2+l(l+ 1)r

2+V(r)!

u l(r) =E ul(r) Pour l"ondes, on al= 0et donc l"équation se simplifie en @2@r

2+V(r)!

u

0(r) =E u0(r)

ou encore u000(r)V0u0(r) =Eu0(r)r <1 u000(r) =Eu0(r)r >1 5

Exercice d

Dans ce problème, on cherche les états liés, c"est-à-dire ce qui ont une énergie qui se trouve dans le

puits. On suppose donc queV0< E <0et on pose=pV

0+Eet=pE. Ces deux constantes

sont ainsi toujours positive et on peut donc réécrire nos équations u000(r) +V0+E u

0(r) = 0r <1

u

000(r) +Eu0(r) = 0r >1,u000(r) +2u0(r) = 0r <1

u

000(r)2u0(r) = 0r >1

Les solutions de la première équation différentielle sont des exponentielles complexes de la formeeiar

ou encore des fonctioncos(r)etsin(r)alors que les solutions de la seconde équation différentielle

sont des exponentielles réelles de la formeer. Alors, pour avoir des solutions générales (équation

différentielle du second ordre)2 constantes), on écrit : u0(r) =Asin(r) +Bcos(r)r <1 u

0(r) =Cer+Derr >1

Pour trouver la valeur des constantes, on utilise les conditions aux bords et les conditions de conti-

nuité : 1. Conditions aux b ords(a) (0)doit être défini)quandr= 0, il faut queu(0) = 0)B= 0 (b) À l"infini, u(r)ne doit pas diverger)le terme enerdoit disparaître)D= 0 2. Conditions de con tinuité(a)La fonction doit être c ontinue)ur<1(r= 1) =ur>1(r= 1))Asin() =Ce (b) La dériv éedoit êt recon tinue)u0r<1(r= 1) =u0r>1(r= 1))Acos() =Ce

La condition de continuité nous permet d"écrire A en fonction de C, mais pas de trouver leur valeur.

On trouvera A en utilisant les condition de normalisation dans l"exercice 6. En attendant, en divisant

les deux équations précédentes on trouve : tan() = ,tan(pV

0+E) =pV

0+EpE

C"est une équation transcendantale. Les valeurs deEqui résolvent cette équations sont les seules

valeurs possibles de l"énergie. En examinant cette équation, on voit bien qu"il y aura un nombre

discret de solutions et non pas une continuité ce qui fait que l"énergie sera quantifiée. Pour trouver

les solutions de cette équation, il faut la tracer (ou la résoudre numériquement) et pour rendre le

problème plus simple, on peut réécrire cette équation en terme deou de: tan( pV

02) =rV

0

21outan() =pV

02 6

Exercice e

Pour résoudre l"équation transcendantale, on trace un graphique en fonction de:5101520a-4-22Premièrement, on note qu"on aura une solution chaque fois que0

0(la racine doit être

0, mais comme elle est au numérateur, elle ne peut pas valoir0doncpV

0n"est pas inclus). On

note ensuite qu"on aura une solution chaque fois que la tangente aura une asymptote qui se trouve entre0etpV

0+(pour bien vous en convaincre, tracez le graphique pour différentes valeurs deV0

et observez comment évolue le nombre de solutions) . La tangente, aura une asymptote si tan() =1 ,=(2n+ 1)2

Ainsi, il y aura un état lié si

0 0+,0(2n+ 1)2 0+, 12 n Il y aura donc qV 0 2+12 + 1états liées.

Exercice f

Si on retourne à nos solutionu0(r), on a trouvé : u0(r) =Asin(r)r <1 u

0(r) =Asin()eerr >1

où, dans la seconde équation, on a écrit C en fonction de A en utilisant les conditions de continuité

de la fonction. La condition de normalisation va nous permettre de trouver la valeur de A. Pour normaliser la fonction, il faut que Z 1 1 d3xj (x)j2= 1,Z 1 0Z 0Z 2 0 drddr2sinju0(r)j2r

2jY00(;)j2= 1, ,Z

1 0 drju0(r)j2= 1 car les harmoniques sphériques sont déjà normalisées. Ainsi 7 Z 1 0 drju0(r)j2= 1 Z 1 0 drjAj2sin2(r) +Z 1 1 drjAj2sin2()e2(1r)= 1quotesdbs_dbs8.pdfusesText_14
[PDF] exercices corrigés méthode du gradient conjugué

[PDF] exercices corrigés methodes itératives

[PDF] exercices corrigés microéconomie 1ère année

[PDF] exercices corrigés microéconomie équilibre général

[PDF] exercices corrigés mitose

[PDF] exercices corrigés mouvement des satellites

[PDF] exercices corrigés mouvement seconde

[PDF] exercices corrigés ondes seconde

[PDF] exercices corrigés ondes terminale s

[PDF] exercices corrigés optimisation non linéaire

[PDF] exercices corrigés optique géométrique pdf

[PDF] exercices corrigés optique ondulatoire mp

[PDF] exercices corrigés orthogonalité dans l'espace

[PDF] exercices corrigés outlook 2010

[PDF] exercices corrigés pendule elastique