[PDF] Exercise Set 5.1 Find bases for the eigenspaces





Previous PDF Next PDF



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Puis calculer A-1. Exercice 8 – Appliquer avec précision aux matrices M et N suivantes l'algorithme du cours qui détermine si une matrice est inversible et 



MATRICES EXERCICES CORRIGES

avec : 32. 5 a = 23. 4 a = ?



Calculs sur les matrices

On fait ceci pour toutes les matrices élémentaires Eij avec 1 ? i j ? n ce qui implique. A = B. Correction de l'exercice 4 ?. Notons A = (aij)



Exercices de mathématiques - Exo7

avec A = (2 1. 3 7. ) X = (x y. ) Y = ( 1. ?2. ) On trouve la solution du système en inversant la matrice : X = A. ?1. Y. L'inverse d'une matrice 2×2 se 



Exercices avec Solutions

Soit une matrice A(N M) de caractères (N?20 et M?30). Ecrire un algorithme qui. 1- Recherche un élément dans la matrice A. 2- Calcule le nombre de voyelles 



Review Exercise Set 20

Exercise 1: Use Gaussian elimination to find the solution for the given system of equations. 3x + y - z = 1 Perform row operations to reduce the matrix ...



Exercise Set 1.4

Know the properties of the matrix transpose and its relationship with invertible matrices. Answer: 10. Use the matrix A in Exercise 4 to verify that.



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

Algébrique sur les Matrices avec Exercices Corrigés Matrices et Changements de Bases ... l'ingalité (?1 ? x2 < 0) n'a pas de solutions.



Exercise Set 1.2

Answer: 8. In Exercises 9–12 solve the linear system by Gaussian elimination. in the general solution of the linear system with augmented matrix B?



Exercise Set 5.1

Find bases for the eigenspaces of the matrices in Exercise 9. Answer: (a). (b). 12. By inspection find the eigenvalues of the following matrices:.

(t) is not an eigenvalue of A.This theorem relates all of the major topics we have studied thus far.Concept Review• Eigenvector• Eigenvalue• Characteristic equation• Characteristic polynomial• Eigenspace• Equivalence TheoremSkills• Find the eigenvalues of a matrix.• Find bases for the eigenspaces of a matrix.Exercise Set 5.1In Exercises 1-2, confirm by multiplication that x is an eigenvector of A, and find the correspondingeigenvalue.1. Answer:52. 3. Find the characteristic equations of the following matrices:(a) (b)

(c) (d) (e) (f) Answer:(a) (b) (c) (d) (e) (f) 4. Find the eigenvalues of the matrices in Exercise 35. Find bases for the eigenspaces of the matrices in Exercise 3Answer:(a) Basis for eigenspace corresponding to ; basis for eigenspace corresponding to(b) Basis for eigenspace corresponding to (c) Basis for eigenspace corresponding to ; basis for eigenspace corresponding to(d) There are no eigenspaces.(e) Basis for eigenspace corresponding to (f) Basis for eigenspace corresponding to

6. Find the characteristic equations of the following matrices:(a) (b) (c) (d) (e) (f) 7. Find the eigenvalues of the matrices in Exercise 6.Answer:(a) 1, 2, 3(b) (c) (d) 2(e) 2(f) 8. Find bases for the eigenspaces of the matrices in Exercise 6.9. Find the characteristic equations of the following matrices:(a) (b)

Answer:(a) (b) 10. Find the eigenvalues of the matrices in Exercise 9.11. Find bases for the eigenspaces of the matrices in Exercise 9.Answer:(a) (b) 12. By inspection, find the eigenvalues of the following matrices:(a) (b) (c) 13. Find the eigenvalues of forAnswer:

14. Find the eigenvalues and bases for the eigenspaces of for15. Let A be a matrix, and call a line through the origin of invariant under A if Ax lies on the linewhen x does. Find equations for all lines in , if any, that are invariant under the given matrix.(a) (b) (c) Answer:(a) and (b) No lines(c) 16. Find given that A has as its characteristic polynomial.(a) (b) [Hint: See the proof of Theorem 5.1.5.]17. Let A be an matrix.(a) Prove that the characteristic polynomial of A has degree n.(b) Prove that the coefficient of in the characteristic polynomial is 1.18. Show that the characteristic equation of a matrix A can be expressed as ,where is the trace of A.19. Use the result in Exercise 18 to show that ifthen the solutions of the characteristic equation of A areUse this result to show that A has(a) two distinct real eigenvalues if .(b) two repeated real eigenvalues if .(c) complex conjugate eigenvalues if .

20. Let A be the matrix in Exercise 19. Show that if , thenare eigenvectors of A that correspond, respectively, to the eigenvaluesand21. Use the result of Exercise 18 to prove that if is the characteristic polynomial of a matrix A,then .22. Prove: If a, b, c, and d are integers such that , thenhas integer eigenvalues - namely, and .23. Prove: If is an eigenvalue of an invertible matrix A, and x is a corresponding eigenvector, then isan eigenvalue of , and x is a corresponding eigenvector.24. Prove: If is an eigenvalue of A, x is a corresponding eigenvector, and s is a scalar, then is aneigenvalue of , and x is a corresponding eigenvector.25. Prove: If is an eigenvalue of A and x is a corresponding eigenvector, then is an eigenvalue of forevery scalar s, and x is a corresponding eigenvector.26. Find the eigenvalues and bases for the eigenspaces ofand then use Exercises 23 and 24 to find the eigenvalues and bases for the eigenspaces of(a) (b) (c) 27. (a) Prove that if A is a square matrix, then A and have the same eigenvalues. [Hint: Look at thecharacteristic equation.](b) Show that A and need not have the same eigenspaces. [Hint: Use the result in Exercise 20 to finda matrix for which A and have different eigenspaces.]28. Suppose that the characteristic polynomial of some matrix A is found to be. In each part, answer the question and explain your reasoning.(a) What is the size of A?(b) Is A invertible?(c) How many eigenspaces does A have?

29. The eigenvectors that we have been studying are sometimes called right eigenvectors to distinguish themfrom left eigenvectors, which are column matrices x that satisfy the equation for somescalar . What is the relationship, if any, between the right eigenvectors and corresponding eigenvalues of A and the left eigenvectors and corresponding eigenvalues of A?True-False ExercisesIn parts (a)-(g) determine whether the statement is true or false, and justify your answer.(a) If A is a square matrix and for some nonzero scalar , then x is an eigenvector of A.Answer:False(b) If is an eigenvalue of a matrix A, then the linear system has only the trivial solution.Answer:False(c) If the characteristic polynomial of a matrix A is , then A is invertible.Answer:True(d) If is an eigenvalue of a matrix A, then the eigenspace of A corresponding to is the set of eigenvectorsof A corresponding to .Answer:False(e) If 0 is an eigenvalue of a matrix A, then is singular.Answer:True(f) The eigenvalues of a matrix A are the same as the eigenvalues of the reduced row echelon form of A.Answer:False(g) If 0 is an eigenvalue of a matrix A, then the set of columns of A is linearly independent.Answer:False

quotesdbs_dbs1.pdfusesText_1
[PDF] exercices de mécanique des fluides avec solutions

[PDF] exercices de mecanique du point materiel prepa

[PDF] exercices de pharmacologie

[PDF] exercices de phénomènes de transfert de chaleur

[PDF] exercices de physique sur les forces

[PDF] exercices de prise de notes écrites

[PDF] exercices de prononciation et darticulation

[PDF] exercices de raisonnement logique mathématiques

[PDF] exercices de relaxation ? l'école

[PDF] exercices de relaxation en classe maternelle

[PDF] exercices de relaxation pdf

[PDF] exercices de rotation geometrie

[PDF] exercices de saut en longueur

[PDF] exercices de théâtre pour débutants

[PDF] exercices de thermodynamique physique