[PDF] ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE





Previous PDF Next PDF



Trigonalisation des matrices carrées

Supposons que toute matrice complexe d?ordre n?1 soit trigonalis- 4. L2PC Chapitre 1. Diagonalisation. Exemples. (1) Soit la matrice.



chapitre 7 : Trigonalisation et diagonalisation des matrices

7.1.4 Théor`eme (Théor`eme de trigonalisation). o`u ni désigne l'ordre de multiplicité de la valeur propre ?i dans le polynôme caractéristique.



Fiche technique 5 - Diagonalisation trigonalisation

exemple 4 : A a une valeur propre triple et un espace propre associé de dimension 1. Trigonaliser la matrice :...



CORRECTION DU TD 3 Exercice 1

4). Trigonalisation. Pour trouver une base dans laquelle s'exprime sous la forme d'une matrice triangulaire supérieure nous.



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

Trigonalisation et diagonalisation des endomorphismes . . . . . . . . . 20 Le groupe GLn(K) est appelé le groupe linéaire des matrices d'ordre n.



Feuille de TD n 2 Supplémentaires trigonalisation

https://webusers.imj-prg.fr/~alexandru.oancea/2020-L2-LU2MA123/2MA123_TD2_FINAL_solutions.pdf



Décomposition de Dunford et réduction de Jordan

La trigonalisation : transformer une matrice en une matrice triangulaire. E2 est donc la droite vectorielle engendrée par v2 = (4 3



Feuille dexercices n 6 : Diagonalisation et trigonalisation de

Diagonalisation et trigonalisation. Exercice 1 Soit A la matrice carrée d'ordre 3 telle que. 4A =.. ?3 4 3. 1. 0 3. ?1 4 1.



CAPES Algèbre linéaire Trigonalisation

(a) Montrer que si u est un endomorphisme nilpotent d'ordre r ? 1 Application : Trigonaliser les matrices suivantes :.



Forme normale de Jordan dune matrice

on commence par trigonaliser A c'est-à-dire par fabriquer une matrice P? telle valeur propre d'ordre 4



Fiche technique 5 - Diagonalisation trigonalisation

• La trigonalisabilité d’une matrice s’obtient après le calcul de son polynôme caractéristique et le constat que ce polynôme est scindé sur le corps de référence de la matrice • Si la matrice est considérée comme matrice complexe elle est donc toujours trigonalisable



Exercices de diagonalisation des matrices - LesMath

Cet exemple sera juste abord´e voici un descriptif des situations possibles avec une valeur propre d’ordre 4 D’abord on remarque que (???Id)4 = 0 • La matrice I 4 • Si dim(E ?) = 1 alors il existe P telle que P?1AP = J 4(?) On trouve une base de Jordanisation en cherchant u tel que (???Id)3(u) 6= 0 • Si dim(E



Trigonalisation - Ensah-community

car tout polynôme en une matrice triangulaire supérieure est une matrice triangulaire supérieure Exercice 11 : [énoncé] a) u admet une valeur propre ? et le sous-espace propre associé est stable par v Cela assure que u et v ont un vecteur propre en commun e 1 On complète celui-ci en une base (e 1e 2 en) Les matrices de u et v



Searches related to trigonaliser une matrice dordre 4 PDF

Dans ce cas il est facile de trigonaliser On commence par se calculer une famille de n ?1 vecteurs propres indépendants(possibled’aprèsleshypothèses)etoncomplèteenunebaseE deRn en«rajoutant »unvecteur à la?n «Dans »cettebase la matrice sera triangulaire Exemple : A = 9 1 6 ? 7 1 ?6 ?10 1 ?7 det(A??I3)= ¯ ¯ ¯

Quels sont les exercices de diagonalisation des matrices ?

Nous proposons des exercices de diagonalisation des matrices. Une matrice est diagonalisable si le nombre de ces valeurs propres égale à la dimension de l’espace dans lequel est définie. D’autre part, on donne des applications de la diagonalisation pour résoudre les systèmes linéaires et calcul de l’exponentielle de matrices.

Comment savoir si une matrice est diagonale ou triangulaire ?

Certains ont déjà été évoqués précédemment mais il a paru bon de les rappeler afin de te faire une idée précise de ces différents cas particuliers qui se retrouvent très souvent en exercice !! Si une matrice est diagonale ou triangulaire, alors les valeurs propres sont les éléments diagonaux de la matrice.

Comment définir une matrice unité d'ordre?

Puisque les matrices peuvent être multipliées à la seule condition que leurs types soient compatibles, il y a des matrices unité de tout ordre. In est la matrice unité d'ordre n et est donc définie comme une matrice diagonale avec 1 sur chaque entrée de sa diagonale principale.

Comment noter les coefficients de la matrice unité d'ordre ?

Il est possible aussi de noter les coefficients de la matrice unité d'ordre n avec le symbole de Kronecker ; le coefficient de la i -ème ligne et j -ème colonne s'écrit : Si l'ordre n'est pas précisé, ou qu'il est trivialement déterminé par le contexte, nous pouvons la noter simplement I.

ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

UNIVERSITÉCLAUDEBERNARDLYON1

Licence Sciences, Technologies, Santé

Enseignement de mathématiques

des parcours Informatique

ANALYSE MATRICIELLE

ET ALGÈBRE LINÉAIREAPPLIQUÉE

- Notes de cours et de travaux dirigés -

PHILIPPEMALBOS

1. Ensembles et applications . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Les corps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

3. Les anneaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4. Les polynômes à une indéterminée . . . . . . . . . . . . . . . . . . . .

9

5. Arithmétique des polynômes . . . . . . . . . . . . . . . . . . . . . . .

12

6. Les fractions rationnelles . . . . . . . . . . . . . . . . . . . . . . . . .

19

1. La structure d"espace vectoriel . . . . . . . . . . . . . . . . . . . . . .

1

2. Bases et dimension d"un espace vectoriel . . . . . . . . . . . . . . . .

5

3. Somme de sous-espaces vectoriels . . . . . . . . . . . . . . . . . . . .

7

4. Les applications linéaires . . . . . . . . . . . . . . . . . . . . . . . . .

9

5. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

1. Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Produit de matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

3. Matrice d"une application linéaire . . . . . . . . . . . . . . . . . . . .

10

4. Trace d"une matrice . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

5. Noyau et image d"une matrice . . . . . . . . . . . . . . . . . . . . . .

15

6. Le rang d"une matrice . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

7. Opérations matricielles par blocs . . . . . . . . . . . . . . . . . . . . .

18

8. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

1. Définition récursive du déterminant . . . . . . . . . . . . . . . . . . .

1

2. Premières propriétés du déterminant . . . . . . . . . . . . . . . . . . .

3

3. Les formules de Cramer . . . . . . . . . . . . . . . . . . . . . . . . . .

8

4. Formulation explicite du déterminant . . . . . . . . . . . . . . . . . . .

10 1

2Table des matières

5. Calcul des déterminants . . . . . . . . . . . . . . . . . . . . . . . . . .

12

6. Calcul de l"inverse d"une matrice . . . . . . . . . . . . . . . . . . . . .

15

7. Déterminant d"un endomorphisme . . . . . . . . . . . . . . . . . . . .

17

8. Annexe : rappels sur les groupes de symétries . . . . . . . . . . . . . .

18

9. Annexe : déterminants et formes multilinéaires alternées . . . . . . . .

20

1. Équations d"évolution linéaire couplées . . . . . . . . . . . . . . . . .

1

2. Le découplage de système d"équations . . . . . . . . . . . . . . . . . .

5

3. La diagonalisation des matrices et des endomorphismes . . . . . . . . .

8

4. Marches sur un graphe et diagonalisation . . . . . . . . . . . . . . . .

11

5. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

1. Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Valeurs propres et espaces propres . . . . . . . . . . . . . . . . . . . .

5

3. Calcul des valeurs propres . . . . . . . . . . . . . . . . . . . . . . . .

9

4. Le cas des endomorphismes . . . . . . . . . . . . . . . . . . . . . . .

11

5. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

1. Trigonalisation des matrices . . . . . . . . . . . . . . . . . . . . . . .

1

2. Diagonalisation des matrices . . . . . . . . . . . . . . . . . . . . . . .

9

3. Une obstruction au caractère diagonalisable . . . . . . . . . . . . . . .

12

4. Caractérisation des matrices diagonalisables . . . . . . . . . . . . . . .

15

5. Matrices diagonalisables : premières applications . . . . . . . . . . . .

17

6. Trigonalisation et diagonalisation des endomorphismes . . . . . . . . .

20

7. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

1. Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Polynômes de matrices . . . . . . . . . . . . . . . . . . . . . . . . . .

3

3. Le lemme de décomposition en noyaux . . . . . . . . . . . . . . . . .

6

4. Le polynôme minimal . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

5. Le théorème de Cayley-Hamilton . . . . . . . . . . . . . . . . . . . . .

14

6. Le cas des endomorphismes . . . . . . . . . . . . . . . . . . . . . . .

21

7. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

1. Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Matrices nilpotentes . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

3. Les espaces spectraux . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

4. Décomposition spectrale géométrique . . . . . . . . . . . . . . . . . .

7

Table des matières1

5. Décomposition spectrale algébrique . . . . . . . . . . . . . . . . . . .

10

6. Calcul de la décomposition spectrale algébrique . . . . . . . . . . . . .

15

7. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

1. Calcul des puissances d"une matrice . . . . . . . . . . . . . . . . . . .

1

2. La fonction exponentielle . . . . . . . . . . . . . . . . . . . . . . . . .

4

3. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

1. Les suites récurrentes . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. La suite de Fibonacci (1202) . . . . . . . . . . . . . . . . . . . . . . .

3

3. Dynamique de populations . . . . . . . . . . . . . . . . . . . . . . . .

4

4. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

1. Systèmes différentiels linéaires à coefficients constants . . . . . . . . .

2

2. Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

3. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 Sommaire1. Ensembles et applications . . . . . . . . . . . . . . . . . . . . . . .1

2. Les corps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

3. Les anneaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4. Les polynômes à une indéterminée . . . . . . . . . . . . . . . . . .

9

5. Arithmétique des polynômes . . . . . . . . . . . . . . . . . . . . .

12

6. Les fractions rationnelles . . . . . . . . . . . . . . . . . . . . . . .

19 Ce chapitre contient peu de démonstrations, son rôle est de fixer les notations et de

rappeler les structures algébriques fondamentales, ainsi que les principaux résultats al- gébriques que nous utiliserons dans ce cours. Nous renvoyons le lecteur au cours de première année pour tout approfondissement.

§1 Ensembles et applications

0.1.1.Applications.-SoientAetBdeux ensembles. Uneapplication fdeAdansB

est un procédé qui à tout élementxdeAassocie un élément unique deB, notéf(x). On

notef:A!B, ouAf!B, ou encore f:A!B x!f(x):

On notef(A)l"image de l"ensembleA, définie par

f(A) =fyjy2B;9x2A;tel quey=f(x)g: 1

2CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES

L"image inverse d"un sous-ensembleYBest définie par f

1(Y) =fxjx2A;f(x)2Yg:

Une applicationf:A!Best diteinjectivesi,f(x) =f(y)impliquex=y. Elle est ditesurjectivesif(A) =B,i.e., pour touty2B, il existe unx2Atel quey=f(x). Une application est ditebijectivesi elle est à la fois injective et surjective. Sif:A!Betg:B!Csont deux applications, on notegf, ou encoregf, l"application, ditecomposée, définie par gf:A!C x!g(f(x)): La composée des applications est une opération associative, i.e., étant données trois applicationsAf!Bg!Ch!D, on a h(gf) = (hg)f:

0.1.2.Quelques ensembles fondamentaux de nombres.-Dans tout ce cours, nous

supposons connus les ensembles de nombres suivants et les opérations d"addition, de soustraction, de multiplication et de division sur ces ensembles : ?l"ensemble des entiers naturels, 0, 1, 2,:::, notéN, ?l"ensemble des entiers relatifs, notéZ, formé des entiers naturels et de leurs opposés, ?l"ensemble des rationnels, notéQ, formé des quotientspq , oùpetqsont des entiers relatifs, avecqnon nul, ?l"ensemble des réels, notéR, qui contient les nombres rationnels et les irrationnels, ?l"ensemble des complexes, notéC, formé des nombresa+ib, oùaetbsont des réels etiun complexe vérifianti2=1.

Sipetqsont deux entiers relatifs, on notera

Jp;qK=fa2Zjp6a6qg:

§2 Les corps

Uncorpsest un objet algébrique constitué d"un ensemble et de deux opérations sur cet ensemble, une addition et une multiplication, qui satisfont à certaines relations. Intu- itivement, cette structure est proche de notre intuition de nombres et des opérations que l"on peut leur appliquer. Avant d"énoncer les relations des deux opérations de la structure de corps, rappelons la structure de groupe. suivantes

CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES3

i)l"opération estassociative,i.e., pour tous élémentsa,betcdeG, a?(b?c) = (a?b)?c; ii)il existe un élémentedansG, appeléneutre, tel que, pour tout élémentadeG, a?e=e?a=a; iii)pour tout élémentadeG, il existe un élémentinverse, que nous noteronsa1, tel que a?a1=e=a1?a: Exercice 1.-On définit sur l"ensemble des nombres réels l"opération?en posant a?b=2a+2b:

1.Cette opération est-elle associative?

2.L"opération

a?b=2a+b est-elle associative?

Exercice 2.-

1.Montrer qu"un groupe possède un unique élément neutre.

2.Montrer que dans un groupe, l"inverse d"un élément est unique.

0.2.2.Exemples.-

1)Le groupetrivialest le groupe à un seul élément, l"élément neutre.

2)L"ensemble des entiersZforme un groupe pour l"addition usuelle. Il ne forme pas

un groupe pour la multiplication.

3)L"ensemble des nombres rationnelsQforme un groupe pour l"addition. L"ensem-

bleQf0gdes nombres rationnels non nul est un groupe pour la multiplication.

4)L"ensemble des complexes non nulsCf0g, muni de la multiplication usuelle des

complexes.

5)L"ensembleRndesn-uplets ordonnées

(x1;:::;xn) de nombres réels, muni de l"opération (x1;:::;xn)+(y1;:::;yn) = (x1+y1;:::;xn+yn); forme un groupe. Exercice 3.-Justifier toutes les propriétés précédentes. Dans le cas deRn, déterminer l"élément neutre du groupe et l"inverse d"unn-uplet(x1;:::;xn).

4CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES

0.2.3.Les groupes abéliens.-Un groupe est ditabélien, oucommutatif, si tous élé-

mentsaetbvérifient a?b=b?a:

Les groupes des exemples 0.2.2 sont abéliens.

Exercice 4.-Les opérations de l"exercice 1 sont-elles commutatives?

Exercice 5.-SoitXun ensemble.

1.Montrer que l"ensemble des permutations deX, i.e. des bijections deXdans lui-

même, forment un groupe.

2.Montrer que ce groupe n"est pas commutatif lorsqueXpossède au moins trois élé-

ments.

0.2.4.Les corps.-Uncorps(commutatif) est un ensembleKsur lequel une opération

d"addition(a;b)!a+bet une opération de multiplication(a;b)!absont définies et satisfont aux assertions suivantes : i)Kest un groupe abélien pour l"addition, ii)Kf0gest un groupe abélien pour la multiplication, iii)la multiplication est distributive par rapport à l"addition, i.e., pour tous élémentsa, betc, on a a(b+c) =ab+ac: deaet notéa, l"élement neutre pour la multiplication est appeléunitéet noté 1, l"inversedeapour la multiplication est notéa1.

0.2.5.Exemples.-

1)L"ensemble des nombres rationnelsQ, l"ensemble des nombres réelsRet l"ensem-

ble desnombres complexesC, munis desopérations d"addition etde multiplication usuelles sont des corps.

2)L"ensembleZdes entiers relatifs n"est pas un corps.

3)Un exemple de corps fini, i.e., avec un nombre fini d"éléments, est donné par

l"ensemble, notéZ=pZ, des entiers modulo un entier premierp, muni des opéra- tions d"addition et de multiplication induites de celles deZ.

Exercice 6.-Montrer queZ=4Zn"est pas un corps.

Exercice 7.-Montrer que dans un corps, l"élément neutre de l"addition joue le rôle d"annulateur, i.e., pour tout élémenta, on a : a0=0: Par définition, un groupe ne peut être vide, il contient au moins un élément. Un corps contient donc au moins deux éléments 0 et 1 qui sont nécessairement distincts.

CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES5

Exercice 8.-Montrer qu"un corps ne contient pas de diviseur de zero, c"est-à-dire que siaetbsont deux éléments non nul d"un corpsK, alors leur produitabest non nul. Il n"existe qu"un seul corps à deux éléments. Exercice 9.-Établir les tables d"addition et de multiplication du corps à deux élé- ments.

0.2.6.Extension de corps.-Un sous-ensembleLd"un corpsKest unsous-corpsde

Ksi les opérations du corpsKmunissentLd"une structure de corps. On dit alors que Kest uneextensiondu corpsL. Par exemple, le corps des réelsRest une extension du corps des rationnelsQet le corps des complexesCest une extension du corpsR.

§3 Les anneaux

La structure d"anneau généralise celle de corps. Un ensemble muni d"une opération d"addition et d"une opération de multiplication qui satisfont à tous les axiomes de corps,

excepté l"existence d"un élément inversea1, pour tout élémentanon nul, est appelé un

anneau commutatif. Pour que notre définition soit complète, on convient, qu"il existe un anneau qui possède un seul élément. Par exemple, l"ensemble des entiers relatifsZ, muni de l"addition et de la multipli- cation, n"est pas un corps - les éléments non nuls ne sont pas tous inversibles - mais il forme un anneau commutatif. Nous verrons que l"ensembleA[x]des polynômes à une in- déterminée à coefficients dans un anneau ou un corpsAforme un anneau; les principales constructions sur les anneaux de polynômes sont rappelées dans la section suivante.

0.3.1.Les anneaux.-Unanneauest un ensembleAmuni d"une opération d"addition

(a;b)!a+bet d"une opération demultiplication(a;b)!abqui satisfont aux asser- tions suivantes i)Aest un groupe abélien pour l"addition, ii)la multiplication est associative, i.e., pour tous élémentsa,betcdeA, (ab)c=a(bc):

iii)la multiplication possède un élément neutre dansA, appeléunitéet noté 1, vérifiant

pour tout élémentadeA,

1a=a1=a:

iv)la multiplication estdistributivepar rapport à l"addition, i.e., pour tous éléments a;b;cdeA, on a : a(b+c) =ab+ac;(b+c)a=ba+ca: Un anneau est ditcommutatifsi sa multiplication est commutative. Exercice 10.-Montrer que dans un anneauA, on a, pour tous élémentsaetb,

6CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES

1.0a=a0=0,

2.(1)a=a,

3.(ab) = (a)b=a(b),

4.(a)(b) =ab.

0.3.2.Exemples.-

forme un anneau commutatif.

2)Un corps (commutatif) est un anneauKnon réduit àf0g, tel que la multiplication

muniKf0gd"une structure de groupe abélien.

3)Si 1=0 dans un anneauA, alorsAest réduit àf0g, car pour tout élémentadeA,

a=1a=0a=0. groupe(G;?)est un morphisme de groupes deGdans lui-même, c"est-à-dire, une appli- cationf:G!Gvérifiant, pour tousa;b2G, f(a?b) =f(a)?f(b): L"ensemble des endomorphismes d"un groupe abélien(G;+), muni de l"addition induite de celle surGet de la composition, est un anneau non commutatif en général.

0.3.4.Formule du binôme.-Dans un anneau, si deux élémentsaetbcommutent, i.e.,

ab=ba, alors on a la formule dite dubinôme de Newton, pour tout entier natureln, (a+b)n=nå p=0 n p a pbnp: Exercice 11.-Démontrer la formule du binôme de Newton.

0.3.5.Caractéristique d"un anneau commutatif.-SoitAun anneau commutatif. La

caractéristiquedeAest le plus petit entier naturel non nulq, tel que l"addition deqfois l"unité soit égale à zero : q:1=1+1+:::+1|{z} qfois=0: Si un tel entier n"existe pas, on dit que l"anneau est de caractéristique nulle.

Exercice 12.-

1.Montrer qu"un anneau commutatif fini est de caractéristique non nulle.

2.Montrer que la caractéristique d"un corps fini est un nombre premier.

Exercice 13.-Construire un corps de caractéristique 3. Exercice 14.-Montrer que dans un anneau commutatif de caractéristique un nombre premierp, alors, pour tous élémentsaetbdeA, on a (a+b)p=ap+bp:

CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES7

0.3.6.Division euclidienne dans l"anneauZ.-Ladivision euclidienneest un résul-

tat fondamental de l"arithmétique élémentaire sur les entiers ou les polynômes. Avant d"identifier les anneaux dans lesquels, un tel algorithme est disponible, rappelons la di- vision euclidienne sur les entiers.

0.1 Théorème (division euclidienne).-Soienta;b2Z, avecb>0. Il existe un

couple unique(q;r)d"entiers dansZtel que : a=bq+r;avec 06r06r0 bjqq0j=jr0rjPar suite,jqq0j=0, d"oùq=q0etr=r0. Montrons l"existence du couple. Considérons l"ensembleA=fk2Zjbk6ag. C"est une partie non vide et majorée deZ. En effet, sia>0, alors 02A, d"oùAest non vide, et comme 16b, l"entieramajoreA. Sia<0, alorsa2A, d"oùAest non vide et 0 majoreA. Par suite, l"ensembleAadmet un plus grand élémentq. On a bq6aEn posantr=abq, on a 06r De l"unicité du quotient et du reste de la division eulcidienne, on déduit qu"un entier bdivise un entierasi, et seulement si, le reste de division euclidienne deaparbest nul. Exercice 15.-Soitnun entier naturel. Calculer la division euclidienne de

1.l"entiern3+n2+2n+1 parn+1,

2.l"entiern4+4n3+6n2parn2+2.

8CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUESFIGURE0.1.:Euclide de Samos (325 - 265 a v.J.-C.)

Euclide est un mathématicien de la Grèce antique né vers 325 av. J.C. et mort vers 265 av. J.C.. Nous n"avons que très peu d"information sur la vie d"Eu- clide. L"article de Fabio Acerbi du siteImage des mathématiques1présente ce que nous savons à ce jour sur le personnage d"Euclide. Euclide est l"au-

teur desÉlémentsqui est un texte fondateur de la géométrie.FIGURE0.2.:Un fragment des éléments d"Euclide, pap yrusdaté d"e ntre75 et 125 de

notre ère.

0.3.7.Les anneaux euclidiens.-SoitAun anneau commutatif. On appellealgorithme

euclidiensurAtoute application

j:Af0g !N;1. Fabio Acerbi, " Euclide » - Images des Mathématiques, CNRS, 2010. En ligne, URL :?????

CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES9

telle que, pour touta2Aet toutb2Af0g, il existeq2Aetr2A, tels que a=bq+r;avecj(r)0.3.8.Exemple.-L"anneauZest euclidien. Il est en effet intègre et l"application valeur absoluej j:Zf0g !Nest un algorithme euclidien, car, pour touta2Zet tout b2Zf0g, il existeq;r2Ztels que a=bq+r;avecjrj5= (3)(2)+(1)avecj1j et

5= (3)(1)+2 avecj2j Dans la suite, nous montrerons que siKest un corps, l"anneauK[x]est euclidien. Exercice 16.-Montrer que l"anneauDdes nombres décimaux, i.e., le sous-anneau de

Q, engendré par 1=10, est euclidien.

§4 Les polynômes à une indéterminée

0.4.1.Polynômes sur un corps.-Avant d"aborder la notion de polynôme, rappelons

qu"il est important de distinguer les polynômes des fonctions polynomiales. En effet, considérons le polynômef=x2xà coefficients dans le corpsZ=2Z. La fonction polynomiale associée ef:Z=2Z!Z=2Z, définie par e f(a) =a2a;pour touta2Z=2Z; est nulle, car ef(0) =0 etef(1) =0, alors que le polynômefn"est pas nul. Exercice 17.-Montrer qu"il n"existe que quatre fonctions polynomiales à coefficients dans le corpsZ=2Zet une infinité de polynômes à coefficients dans ce corps. La situation est différente pour les polynômes à coefficients dans les corps infinis, dans ce cas, il existe une correspondance biunivoque entre les polynômes et les fonctions polynomiales, cf. section 0.4.5.

10CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES

0.4.2.Les polynômes.-SoitKun corps. On appellepolynômeà coefficients dansK,

toute suitef= (an)n2Nd"éléments deK, nulle à partir d"un certain rang. On noteK(N) l"ensemble de ces suites. On définit sur l"ensembleK(N)une addition et un produit externe par un scalaire en posant, pour tousf= (an)n2N,g= (bn)n2Netl2K, f+g= (an+bn)n2N;lf= (lan)n2N: En outre, on définit une multiplication en posant, pour tousf= (an)n2N,g= (bn)n2N, fg= (cn)n2N;aveccn=nå i=0a ibni:

0.4.3.L"algèbre des polynômes.-Ces trois opérations munissent l"ensembleK(N)

d"une structure deK-algèbreassociative, commutative et unitaire, c"est-à-dire, i)K(N)muni de l"addition et du produit par un scalaire est unK-espace vectoriel, ii)K(N)muni de l"addition et de la multiplication est un anneau commutatif, iii)pour tousf;g2K(N)et tous scalairesl;m2K, on a (lf)(mg) = (lm)(fg):

0.4.4.Notion d"indéterminée.-L"écriture des polynômes sous forme de suite est peu

manipulable, aussi, on préfère la notation basée sur la notion d"indéterminée. Notonsx

le polynôme deK(N)dont tous les termes sont nuls, sauf celui de degré 1 : x= (0;1;0;:::): Par convention, on posex0=1. On définit les puissances dexpar récurrence, pour tout entierk,xk+1=xxk. Ainsi, sif= (an)n2N, on montre que f=+¥å i=0a ixi: sont égaux si, et seulement si, ils ont les mêmes coefficients : k=0a kxk=+¥å k=0b kxksi, et seulement si,ak=bk;pour toutk2N: On notera alorsK[x]l"ensemble despolynômes à une indéterminéeà coefficients dans le corpsK. Avec ces notations, l"addition des polynômes est définie de la façon suivante, pourf=må i=0a ixietg=nå j=0b jxj, alors f+g=maxfm;ngå k=0(ak+bk)xk;

CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES11

avecak=0, pourk>metbk=0 pourk>n. Par ailleurs, pour la multiplication, on a fg=m+nå k=00 B i;j>0 i+j=k(aibj)1 C Axk i=0a ixideK[x],ondéfinit lafonction polynomialeassociée comme l"application e f:K!K; qui, à touta2K, associe le scalairef(a)2K, obtenu en remplaçant dans l"expression defl"indéterminéexpara. Nous avons vu en 0.4.1 que sur un corps fini, les notions de polynômes et de fonction polynomiale ne coïncident pas. Nous allons voir que c"est le cas lorsque le corps est infini, par exemple lorsqueKestRouC.

Exercice 18.-Supposons queKest le corpsRouC.

1.Montrer que l"application

j:K[x]!KK définie parj(f) =efest injective.

2.Montrer que deux polynômes à coefficients dansKsont égaux si, et seulement si

leurs fonctions polynomiales associées sont égales.

0.4.6.Degré d"un polynôme.-Soitfun polynôme deK[x]. Sif=0, on pose

degf=¥, sif=må i=0a ixiest non nul, on note degfle plus grand entier naturel ntel queansoit non nul. L"entier degfest appelé ledegrédu polynômef. Un polynôme non nulfde degrén>0 s"écrit de façon unique sous la forme f=a0+a1x+:::+anxn; oùanest non nul. Le degré defest le plus grand exposant dexapparaissant dansf.

0.4.7.Les monômes.-On appeleramonômeun polynôme de la formexk, oùkest un

entier naturel. La famille de monômes(xn)n2Nforme une base duK-espace vectoriel

K[x]. On l"appelle base canonique deK[x].

0.4.8.Terme de plus haut degré.-Lecoefficient de plus haut degré(leading coeffi-

cient) d"un polynômefdeK[x], noté lc(f), est le coefficient du monôme de plus grandquotesdbs_dbs30.pdfusesText_36

[PDF] trigonaliser une matrice exemple

[PDF] trigonalisation méthode de jordan

[PDF] trigonalisation matrice 3x3

[PDF] qu'est ce qu'internet definition

[PDF] diagonalisation et trigonalisation des endomorphismes

[PDF] qu'est ce qu'internet pdf

[PDF] valeur propre xcas

[PDF] socialisme pdf

[PDF] principes du communisme engels

[PDF] difference entre capitalisme socialisme et communisme

[PDF] le communisme pour les nuls

[PDF] capitalisme pdf

[PDF] différence entre socialisme et communisme

[PDF] gluten de blé farine

[PDF] blé gluten pourcentage