[PDF] chapitre 7 : Trigonalisation et diagonalisation des matrices





Previous PDF Next PDF



Feuille de TD n 3 Diagonalisation trigonalisation

https://webusers.imj-prg.fr/~alexandru.oancea/2020-L2-LU2MA123/2MA123_TD3_%20FINAL_solutions.pdf



chapitre 7 : Trigonalisation et diagonalisation des matrices

Trigonalisation et diagonalisation des endomorphismes . calcul des puissances d'une matrice diagonalisable et la résolution des syst`emes différentiels.



Chapitre III: Réduction dendomorphisme: diagonalisation et

27 mars 2021 Diagonalisation. Trigonalisation. Polynômes d'endomorphismes-Polynôme minimal. Plan. 1. Diagonalisation. Valeurs propres et vecteurs propres ...



R´EDUCTION DES ENDOMORPHISMES

2.4 Crit`eres de diagonalisation. 2.5 Méthode de diagonalisation – Exemples. 3 Trigonalisation. 3.1 Matrices triangulaires – endomorphismes trigonalisables.



Réduction des endomorphismes (Alg`ebre 3)

3 Trigonalisation des endomorphismes en dimension finie. 26. 3.1 Préliminaires . Un endomorphisme f de E est diagonalisable si et seule-.



Feuille de TD n 3 Diagonalisation trigonalisation

https://webusers.imj-prg.fr/~alexandru.oancea/2020-L2-LU2MA123/2MA123_TD3_%20FINAL.pdf



Réduction des endomorphismes et des matrices carrées

2 Diagonalisation d'un endomorphisme d'une matrice. 5. 2.1 Définitions . 3.3 Exemples de trigonalisation . ... 4.1 Diagonaliser une matrice .



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

La diagonalisation des matrices et des endomorphismes . . . . . . . . . 8 Trigonalisation et diagonalisation des endomorphismes . . . . . . . . . 20.



Réduction des endomorphismes

Trigonalisation des endomorphismes et des matrices . On dit que la matrice A est diagonalisable si l'endomorphisme de Kn canoniquement.



TD 4. Diagonalisation et trigonalisation

Diagonalisation et trigonalisation. Exercice 1. Soit E un R-espace vectoriel de dimension finie 2 et de base B = (e1e2). Considérons les endomorphismes de 



Diagonalisation et trigonalisation - sorbonne-universitefr

Diagonalisation et trigonalisation Alg ebre et analyse fondamentales - Paris 7 - O Bokanowski - Septembre 2015 Pour ce cours il est important de conna^ tre le th eor eme donnant les divers crit eres de diago-nalisation des endomorphismes (savoir calculer les sous-espaces propres d’un endomorphisme)





Réduction d’endomorphismes Chap 07 : cours complet

Théorème 3 1 : comparaison des spectres réels et complexes Définition 3 2 : polynôme caractéristique d’une matrice carrée Théorème 3 2 : lien entre valeurs propres d’un endomorphisme et d’une matrice 4 Diagonalisation des endomorphismes en dimension finie et des matrices carrées



Chapitre 4 : Réduction des endomorphismes

4 Caractérisation des endomorphismes diagonalisables Définition Soit f ?L(EE) diagonalisable Soit ?? une valeur propre de f On note Ev?=?{Ef()v?v} G = GG E? est un sous-espace vectoriel de E appelé sous-espace propre associé à ? Proposition Soient f un endomorphisme diagonalisable de E et ?? une valeur propre de f



Chapitre 2 Diagonalisation des endomorphismes et des matrices

2 L2PC Chapitre 4 Diagonalisation 6 3 Crit ere de diagonalisation 23 Introduction: Sur les matrices d’un endomorphisme Soient Eun K-espace vectoriel de dimension nie (K = R ou C) et f : E!Eun endo-morphisme de E Nous avons vu qu’ etant donn ee une base B= fe 1; ;e ngde E on associe a f une matrice M



Searches related to diagonalisation et trigonalisation des endomorphismes PDF

{ sur C on pourra montrer la connexit¶e des matrices diagonalisables et de l’ensemble des matrices poss¶edant n valeurs propres distinctes † les endomorphismes normaux sont diagonalisables; † classi?cation des coniques (projective et euclidienne) † Burnside: G sous-groupe de GLn(Calors: G ?ni G d’exposant ?ni

Qu'est-ce que la réduction des endomorphismes et la diagonalisation des matrices ?

La réduction des endomorphismes et la diagonalisation des matricespermettent de simplifier considérablement un certain nombre de calculs, comme par exemple le calcul de puissances d'une matrice, ou la résolution de systèmes différentiels linéaires. Sans entrer dans les détails, on peut en donner quelques exemples ici.

Comment créer un endomorphisme diagonalisable ?

C’est donc a vous de bien pr¶eciser les choses. †il faut suremen^ t commencer par introduire les d¶e?nitions sur valeurs propres, espaces propres et donner la d¶e?nition d’un endomorphisme diagonalisable (les sous-espaces propres sont en somme directe, si cette somme directe est l’espace tout entier alors l’endomorphisme est dit diagonalisable);

Quelle est la matrice d'un endomorphisme?

Matrice d'un endomorphisme D2 : La matrice de dans la base de est une matrice carrée d'ordre où que l'on note ou Mat. avec , . Pour retenir : Les coordonnées de dans la base forment la -ème colonne de .

Est-ce que l'endomorphisme est diagonalisable ?

L'endomorphisme considéré est donc diagonalisable. Diagonalisation, polynôme caractéristique On a vu dans l'exemple ci-dessus un cas où la recherche de valeurs propres se ramenait à une recherche de racines d'un polynôme. Cette situation n'était pas un cas particulier, comme on va le voir. Soit une valeur propre de l'endomorphisme .

CHAPITRE

7Trigonalisation et diagonalisation

des matrices Sommaire1 Trigonalisation des matrices . . . . . . . . . . . . . . . . . . . . . . . . .1

2 Diagonalisation des matrices . . . . . . . . . . . . . . . . . . . . . . . . .

7

3 Une obstruction au caract

`ere diagonalisable . . . . . . . . . . . . . . . .11

4 Caract

´erisation des matrices diagonalisables . . . . . . . . . . . . . . . .12

5 Matrices diagonalisables : premi

`eres applications . . . . . . . . . . . . .15

6 Trigonalisation et diagonalisation des endomorphismes . . . . . . . . . .

17

7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 Nous abordons dans ce chapitre les probl

`emes de trigonalisation et diagonalisation des ma- trices. Nous montrons que toute matrice `a coefficients complexes est trigonalisable, c"est-`a-dire semblable `a une matrice triangulaire sup´erieure. On pr´esente quelques cons´equences th´eoriques importantes de ce r

´esultat.

Le probl

`eme de la diagonalisation est plus´epineux. Une matrice n"est pas en g´en´eral dia- gonalisable, c"est- `a-dire semblable`a une matrice diagonale. Dans ce chapitre, on s"int´eressera aux obstructions au caract `ere diagonalisable. En particulier, nous donnerons une caract´erisation de nature g

´eom´etrique des matrices diagonalisables.

Nous pr

´esentons deux applications imm´ediates de la diagonalisation des matrices avec le calcul des puissances d"une matrice diagonalisable et la r

´esolution des syst`emes diff´erentiels

lin ´eaires d´efinis par une matrice diagonalisable. Nous reviendrons sur ces deux applications dans les prochains chapitres, notamment dans le cas o `u ils mettent en jeu des matrices non diagonalisables. x1 Trigonalisation des matrices

7.1.1. D

´efinition.-Une matriceAdeMn(K)est ditetrigonalisabledansMn(K), siAest semblable `a une matrice triangulaire sup´erieure deMn(K). C"est-`a-dire, s"il existe une matrice 1 2

CHAPITRE 7. TRIGONALISATION ET DIAGONALISATION

DES MATRICES

inversiblePdeMn(K)et une matrice triangulaire sup´erieureT`a coefficients dansKtelles que

A=PTP1:(7.1)

On notera que toute matrice triangulaire sup

´erieure´etant semblable`a une matrice triangu- laireinf a une matrice triangulaire inf´erieure.

7.1.2 Exercice.-SoitAune matrice deMn(K)et soitune valeur propre deA. Montrer

que la matriceAest semblable`a une matrice de la forme 2 6 664
0...B 03 7 775
o `uBest une matrice deMn1(K).

7.1.3. Caract

´erisation des matrices trigonalisables.-Le r´esultat suivant fournit une ca- ract ´erisation des matrices trigonalisables.7.1.4 Th ´eor`eme (Th´eor`eme de trigonalisation).-Une matriceAdeMn(K)est trigonalisable dansMn(K)si, et seulement si, son polynˆome caract´eristiquepAest scind´e

surK.Preuve.La condition est n ´ecessaire. SiAest une matrice trigonalisable, par d´efinition, elle est

semblable `a une matrice triangulaire sup´erieure : t=2 6 664
1

02...............

00n3 7 775

Le polyn

ˆome caract´eristique de la matriceTest scind´e : p

T= (1)n(x1):::(xn):

D"apr `es la proposition 6.3.3, deux matrices semblables ont mˆeme polynˆome caract´eristique. Ainsi,pA=pTet par suite le polynˆome caract´eristique deAest scind´e surK.

La condition est suffisante. On proc

`ede par r´ecurrence surn. Toute matrice deM1(K)est trigonalisable. On suppose que tout matrice deMn1(K), dont le polynˆome caract´eristique est scind ´e, est trigonalisable, montrons que cela est vrai pour toute matrice deMn(K). SoitA2 Mn(K), telle que le polynˆomepAsoit scind´e surK. Le polynˆomepAadmet donc au moins une racinedansK. Consid´erons un vecteur propreedansKnassoci´e`a la valeur propre. Compl´etons le vecteureen une baseB= (e;e2;:::;en)deKn. SoituA l"endomorphisme deKnassoci´e`a la matriceA,i.e., l"endomorphisme d´efini, pour tout vecteur xdeKn, paruA(x) =Ax. On a u

A(e) =Ae=e;

CHAPITRE 7. TRIGONALISATION ET DIAGONALISATION

DES MATRICES3

par suite, la matrice de l"endomorphismeuAexprim´e dans la baseBest [uA]B=2 6 664
0...B 03 7 775;
o `uBest une matrice deMn1(K). La matriceA´etant semblable`a la matrice[uA]B, il existe une matrice inversiblePdeMn(C), telle que P 1AP=2 6 664
0...B 03 7 775:

De plus, d"apr

`es 6.3.8, le polynˆome caract´eristique du blocBdivise le polynˆome caract´eristique

de la matriceA, il est donc scind´e comme ce dernier. Par hypoth`ese de r´ecurrence, la matriceB

est semblable `a une matrice triangulaire sup´erieure, il existe une matrice inversibleQdans M n1(K), telle quet0=Q1BQsoit triangulaire sup´erieure. En multipliant par blocs, on a : 2 6

6641 00

0...Q 03 7 7751
P 1AP2 6

6641 00

0...Q 03 7 775=2
6 664

0...Q1BQ

03 7 775
2 6 664

0...T0

03 7 775:

En posant

R=P2 6

6641 00

0...Q 03 7 775;
la derni `ere´egalit´e s"´ecrit R 1AR=2 6

6641 00

0...Q 03 7 775:
Ainsi,Aest semblable`a une triangulaire sup´erieure.

7.1.5. Trigonalisation surC.-Voici une premi`ere cons´equence importante du th´eor`eme de

trigonalisation.D"apr nul deC[x]est scind´e surC. Par suite, on a 4

CHAPITRE 7. TRIGONALISATION ET DIAGONALISATION

DES MATRICES7.1.6 Proposition.-Toute matriceAdeMn(C)est trigonalisable dansMn(C).Notons que toute matriceAdeMn(R)peut toujours se trigonaliser dansMn(C). En effet,

si le polyn ˆome carat´eristique deAest scind´e surR,Aest trigonalisable dansMn(R). Sinon, le polyn ˆomepAest toujours scind´e dansMn(C). Il existe alors une matrice inversiblePet une matrice triangulaireTdeMn(C)telles queA=PTP1.

7.1.7. Exemple.-La matrice suivante deM4(R)

A=2 6

6401 1 1

1 0 1 1

0 0 01

0 0 1 03

7 75
admet pour polyn

ˆome caract´eristique

p

A= (x2+ 1)2:

Ce polyn

ˆome n"est pas scind´e dansR[x], la matriceAn"est donc pas trigonalisable dans M

4(R). Cependant, il est scind´e dansC[x]:

p

A= (xi)2(x+i)2:

La matrice est trigonalisable. Posons

P=2 6

6411 1 0

i0i i

0 1 0 1

0i0i3 7 75:

Le premier et troisi

`eme vecteur colonne de la matricePsont des vecteurs propres associ´es aux valeurs propresietirespectivement. Les deux autres vecteurs colonnes compl`etent ces vecteurs en une base de trigonalisation. On a A=P2 6

64i1 0 0

0i0 0 0 0i1

0 0 0i3

7

75P1;avecP1=12

2 6

641i1 0

0 0 1i

1i0i

0 0 1i3

7 75:

7.1.8. Somme et produit des valeurs propres.-Le th´eor`eme de trigonalisation nous permet

de relier des invariants d"une matrice, tels que sa trace et son d

´eterminant,`a ses valeurs propres.

Si une matriceAest trigonalisable, semblable`a une matrice triangulaire sup´erieureT, alors les valeurs propres deA´etant les racines du polynˆomepA, sont aussi les coefficients de la diagonale de la matriceT. ´Etant donn´ee une matriceAdeMn(C), alors son polynˆome caract´eristique est scind´e surC: p

A= (1)n(x1):::(xn):

CHAPITRE 7. TRIGONALISATION ET DIAGONALISATION

DES MATRICES5

La matriceAest semblable`a une matrice triangulaireT,i.e., il existe une matrice inversibleP telle que P 1AP=2 6 664
1

02...............

00n3 7 775
Etant semblables, les matricesAetTont mˆeme trace et mˆeme d´eterminant, on en d´eduit que la trace (resp. le d ´eterminant) deAest´egale`a la somme (resp. le produit) des valeurs propres, compt

´ees avec leur ordre de multiplicit´e. Pr´ecis´ement, on a7.1.9 Proposition.-SoitAune matrice deMn(C)de polynˆome caract´eristique

p

A= (1)n(x1)n1:::(xp)np;

o

`unid´esigne l"ordre de multiplicit´e de la valeur propreidans le polynˆome caract´eristique.

Alors,

i)trace(A) =n11+:::+npp, ii)det(A) =n11:::npp.

Plus g

´en´eralement, pour tout entierk1, on a

iii)trace(Ak) =n1k1+:::+npkp, iv)det(Ak) =k:n11:::k:npp.7.1.10. Exemples.-Dans l"exemple 6.3.5, on a montr´e que la matriceA=01 1 0 poss `ede deux valeurs propresieti; la somme de ces valeurs propres est´egale`a la trace deA et leur produit est le d

´eterminant deA.

Dansl"exemple6.3.6,onamontr

R =cossin sincos estSpC(R) =fei;eig. La proposition pr´ec´edente, nous permet de retrouver les relations trigonom

´etriques bien connues :

trace(R) = 2cos=ei+ei; detR= 1 =eiei:

7.1.11 Exercice.-Montrer qu"une matrice deMn(R)est inversible si, et seulement si, elle

n"admet pas de valeur propre nulle.

7.1.12. Exemple.-Dans l"exemple 7.3.4, nous avons montr´e que la matrice

A=2 6

66400 1.........

00 1 11 13 7 775
6

CHAPITRE 7. TRIGONALISATION ET DIAGONALISATION

DES MATRICES

admet pour valeur propre0, d"ordre de multiplicit´e g´eom´etriquen2, par suite le polynˆome

caract

´eristique s"´ecrit sous la forme

p

A= (1)nxn2(x2+x+):

D ´eterminons les autres valeurs propres deA. Supposons que p

A= (1)nxn2(x1)(x2):

D"apr `es la proposition 7.1.9,1et2satisfont les relations trace(A) =1+2 trace(A2) =21+22 avec A 2=2 6

66411 1.........

11 1 11n3 7 775:
Ainsi,trace(A) = 1ettrace(A2) = 2n1, par suite,1et2satisfont les deux relations

1+2= 1

21+22= 2n1

Comme(1+2)2=21+22+ 212, le syst`eme pr´ec´edent se r´eduit`a

1+2= 1

12= 1n

Donc1et2sont solutions de l"´equation

2+ (1n) = 0:

D"o `u

1=1 +p4n32

; 2=1p4n32

Le spectre deAest donc

Sp(A) =

0;1p4n32

;1 +p4n32

Les sous-espaces propres sont d

´efinis par

E

0= Vect(2

6

666641

1 0... 03 7

77775;2

6

666640

1 1... 03 7

77775; ::: ;2

6

666640

1 1quotesdbs_dbs26.pdfusesText_32
[PDF] qu'est ce qu'internet pdf

[PDF] valeur propre xcas

[PDF] socialisme pdf

[PDF] principes du communisme engels

[PDF] difference entre capitalisme socialisme et communisme

[PDF] le communisme pour les nuls

[PDF] capitalisme pdf

[PDF] différence entre socialisme et communisme

[PDF] gluten de blé farine

[PDF] blé gluten pourcentage

[PDF] gluten de blé bio

[PDF] gluten de blé recette

[PDF] taux de gluten dans le blé

[PDF] gluten de blé valeur nutritive

[PDF] extraction gluten farine blé