[PDF] PRODUIT SCALAIRE DANS LESPACE Les vecteurs et ne sont





Previous PDF Next PDF



1 Calcul vectoriel dans le plan et dans lespace - 1.1 Vecteurs du plan

Remarque : Le scalaire est placé avant le vecteur : on écrit u et non u. Dans la littérature



Droites et plans de lEspace Calcul vectoriel dans lEspace

3.1 Caractérisation vectorielle d'un plan de l'Espace . 1. Par deux points distincts A et B passe une seule droite notée (AB).



Plan et espace

19 nov. 2014 et le produit vectoriel. Table des matières. 1 Cours. 1 ... Un plan vectoriel est un espace vectoriel contenant deux vecteurs non ...



1) Produit vectoriel

Page 1. Exposé 39 : Produit vectoriel dans l'espace euclidien orienté de dimension 3. repere et base du plan et de l'espace (notamment base orthonormé).



Produit vectoriel dans lespace euclidien orienté de dimension 3

18 mai 2009 Ces deux plans ont chacun des avantages et des inconvénients `a vous de vous servir de tout cela pour faire votre propre plan. 1 Premiere façon ...



DÉTERMINANTS DANS LE PLAN ET DANS LESPACE

Calcul de l'aire d'un parallélogramme (1). le déterminant de ( u v) dans une base quelconque d'un plan vectoriel qui les contient.



PRODUIT SCALAIRE DANS LESPACE

Les vecteurs et ne sont pas orthogonaux. II. Vecteur normal à un plan. 1) Définition et propriétés. Définition : Un vecteur non nul 



Calcul vectoriel – Produit scalaire

Si BAC est un angle droit alors cos ? = 0 et ?. u v = 0. Vecteurs orthogonaux. 1 Définition. Soit u et v deux vecteurs du plan. u et v 



Espaces vectoriels

Soit E un espace vectoriel. 1. Soient F et G deux sous-espaces de E. Montrer que A quelle condition un plan vectoriel et une droite vectorielle de R3 ...



Calcul vectoriel barycentres

Plan : I Calcul vectoriel dans l'espace. II Barycentres. 1) Barycentre de deux points. 2) Barycentre de trois points. III Barycentre de n points.

PRODUIT SCALAIRE DANS LESPACE 1

PRODUIT SCALAIRE

DANS L'ESPACE

I. Produit scalaire de deux vecteurs

1) Définition

Soit et deux vecteurs de l'espace. A, B et C trois points tels que et Il existe un plan P contenant les points A, B et C.

Définition :

On appelle produit scalaire de l'espace de et le produit égal au produit scalaire dans le plan P.

On a ainsi :

- si ou est un vecteur nul,

Exemple :

Vidéo https://youtu.be/vp3ICG3rRQk

ABCDEFGH est un cube d'arête a.

uvuAB=vAC=uv.uv.ABAC.0uv=uv .cos ;uvuv uv=´´ 2 uvAB DG ABAF ABAB a H 2

2) Propriétés

Les propriétés dans le plan sont conservées dans l'espace. Propriétés : Soit , et trois vecteurs de l'espace. - et sont orthogonaux.

Démonstration :

Il existe un plan P tel que les vecteurs et admettent des représentants dans P. Dans le plan, les règles de géométrie plane sur les produits scalaires s'appliquent.

3) Expression analytique du produit scalaire

Propriété : Soit et deux vecteurs de l'espace muni d'un repère orthonormé . Alors .

Et en particulier : .

Démonstration :

En effet, on a par exemple dans le plan définit par le couple : , et .

On a en particulier : .

Exemple :

Vidéo https://youtu.be/N1IA15sKH-E

On considère le repère de l'espace .

uvw 2 .uuu= ..uvvu = ...uvwu vuw +=+ ...kuvu kvk uv== kÎ.0uv=Ûuvuv x uy z x vy z ,,,Oijk .'''uvx xyy zz=++ 222
.uuuxyz==++ uvx iyj zkxiyjz k xxiixy ij xzi kyxjiy yjj yzj kzxkizyk jzzk k xxyyzz ;ij 2 .1iii== 2 .1jjj== ..0ijji == 2 222
.uuu xxy yzz xyz==++=++ ;,,CCBCDCG 3

Alors : et soit .

Alors .

Les vecteurs et ne sont pas orthogonaux.

II. Vecteur normal à un plan

1) Définition et propriétés

Définition : Un vecteur non nul de l'espace est normal à un plan P lorsqu'il est orthogonal à tout vecteur admettant un représentant dans P. Théorème : Un vecteur non nul de l'espace est normal à un plan P s'il est orthogonal à deux vecteurs non colinéaires de P.

Démonstration :

Elle est incluse dans la démonstration du corollaire qui suit. Au XIXe siècle, le vecteur normal , appelé produit vectoriel, est noté ⋀. Le produit vectoriel a été inventé par un mathématicien allemand, Hermann

Günther Grassmann (1809 ; 1877).

Corollaire : Une droite est orthogonale à toute droite d'un plan si et seulement si elle est orthogonale à deux droites sécantes de ce plan.

Démonstration (exigible BAC) :

- Si une droite est orthogonale à toute droite d'un plan P alors elle est en particulier orthogonale à deux droites sécantes de P. - Démontrons la réciproque : 1 1 1 CE 10 01 0,50 DI 1 1 0,5 DI .111110,50,5CEDI =´+´-+´= CE DI nnnuv 4 Soit une droite de vecteur directeur orthogonale à deux droites et de P sécantes et de vecteurs directeurs respectifs et . Alors et sont non colinéaires et orthogonaux au vecteur . Soit une droite quelconque () de P de vecteur directeur .

Démontrons que () est orthogonale à .

peut se décomposer en fonction de et qui constituent une base de P (car non colinéaires).

Il existe donc deux réels x et y tels que .

Donc , car est orthogonal avec et .

Donc est orthogonal au vecteur .

Et donc est orthogonale à ().

Méthode : Déterminer si un vecteur est normal à un plan

Vidéo https://youtu.be/aAnz_cP72Q4

ABCDEFGH est un cube.

Démontrer que le vecteur est normal au plan

(ABG).

On considère le repère .

Dans ce repère : ,,,,.

On a ainsi :

, et , donc : Donc est orthogonal à deux vecteurs non colinéaires de (ABG), il est donc normal à (ABG). Méthode : Déterminer un vecteur normal à un plan

Vidéo https://youtu.be/IDBEI6thBPU

Dans un repère orthonormé, soit et .

Déterminer un vecteur normal au plan (ABC).

d n 1 d 2 d uvuvn D w D d wuv wxuyv=+...0wnxu nyvn=+= nuvnw d D CF ;,,BBABC BF 1 0 0 A 0 0 0 B 0 1 0 C 0 0 1 F 0 1 1 G 0 1 1 CF 0 1 1 BG 1 0 0 AB .0011110 .0(1)10100 CFBG CFAB CF 11 2,3 21
AB 2 0 2 C 5

On a : et .

Soit un vecteur orthogonal au plan (ABC). Il est tel que : soit

Prenons par exemple, alors et .

Le vecteur est donc normal au plan (ABC).

2) Equation cartésienne d'un plan

Théorème : L'espace est muni d'un repère orthonormé . Un plan P de vecteur normal non nul admet une équation cartésienne de la forme , avec ℝ. Réciproquement, si a, b et c sont non tous nuls, l'ensemble des points tels que , avec ℝ, est un plan.

Démonstration (exigible BAC) :

- Soit un point de P. 2 1 3 AB 1 2 0 AC a nb c .0 .0 nAB nAC 230
20 abc ab 2230
2 330
2 2 bbc ab bc ab cb ab b=1 1c= a=2 2 1 1 n ;,,Oijk a nb c ax+by+cz+d=0 dÎ x My z ax+by+cz+d=0 dÎ A A A x Ay z 6 et sont orthogonaux avec . - Réciproquement, supposons par exemple que (a, b et c sont non tous nuls). On note E l'ensemble des points vérifiant l'équation

Alors le point vérifie l'équation .

Et donc E.

Soit un vecteur . Pour tout point , on a :

E est donc l'ensemble des points tels que .

Donc l'ensemble E est le plan passant par A et de vecteur normal .

Exemple :

Le plan d'équation cartésienne a pour vecteur normal .quotesdbs_dbs29.pdfusesText_35
[PDF] Calculs de déterminants - Exo7 - Emathfr

[PDF] Le déterminant de Vandermonde - Epsilon 2000 - Free

[PDF] Second degré : Résumé de cours et méthodes 1 - Xm1 Math

[PDF] Déterminants

[PDF] X Matrices - Déterminants - Systèmes d 'équations 1 Introduction )

[PDF] 1 Résumé 2 Matrices rectangulaires - Cours en Ligne

[PDF] Diagonalisation des matrices Matrices diagonales - CEMHTI

[PDF] Une démonstration du calcul du déterminant en blocs - Numdam

[PDF] Salud del adolescente - World Health Organization

[PDF] quels sont les principaux déterminants de santé et de bien-être social

[PDF] DS 2 - Seconde - Physique - Chimie - Free

[PDF] sur la détermination de l 'acidité titrable du lait - Hal

[PDF] Détermination théorique de l 'enthalpie de solubilité ? l 'état solide

[PDF] Travaux Pratiques - usthb

[PDF] TP N°2 DETERMINATION DE LA CHALEUR LATENTE DE FUSION