[PDF] [PDF] ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE





Previous PDF Next PDF



[PDF] Exercices calcul matriciel

Exercices calcul matriciel Exercice 1 Calculer les matrices suivantes : A + B B + A ?2B et 3A ? 2B Calculer la matrice M = 3A + 2B ? 5I



[PDF] Calcul matriciel - Nathalie Daval

BTS DOMOTIQUE Calcul matriciel 2008-2010 I Matrices Définition 1 Soit n et p deux entiers naturels non nuls Une matrice n × p est un tableau à n 



[PDF] Chapitre 1 - Calcul matriciel 1 Notion de matrice - A Schreck

BTS SIO 2 Si la matrice comporte n lignes et p colonnes on dit que la matrice est de dimension (ou 4 Calcul matriciel à la calculatrice



[PDF] Calcul matriciel - PanaMaths

BTS Alternance Février 2004 1 Informatique de Gestion Calcul matriciel Matrices > Définition Soit m et n deux entiers naturels non nuls



[PDF] Calcul matriciel

Calcul matriciel UJF Grenoble 1 Cours 1 1 Opérations sur les matrices Etant donnés deux entiers m et n strictement positifs une matrice à m lignes et n



[PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

3) Vérifier le calcul en effectuant les calculs des matrices MM-1 et M-1M Exercice 17 – Soit M la matrice de M3(R) définie par : M =



[PDF] Introduction au calcul matriciel et `a ses applications

Définition 1 1 1 On appelle matrice `a m lignes et n colonnes `a coefficients les calculs ou de réduire les formules Exemple



[PDF] ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

Calcul de l'inverse — Déterminer si une matrice est inversible et le calcul des inverses sont des problèmes importants d'algèbre linéaire



[PDF] Matrices - Exo7 - Cours de mathématiques

Dans le calcul matriciel la matrice nulle joue le rôle du nombre 0 pour les réels 1 3 Addition de matrices Définition 3 (Somme de deux matrices)



Cours BTS Calcul matriciel - mathematicefr

Cours BTS Calcul matriciel S B Lycée des EK S B Présentation en Latex avec Beamer Dé?nitions Egalité de deux matrices Somme de deux matrices



BTS CG - Simulateur de notes pour prioriser ses révisions

Calcul matriciel Dans ce cours désigne ou un corps commutatif quelconque I – Matrices et applications Les matrices sont un outil de calcul et de représentation des applications linéaires 1 Définitions Soient donnés On appelle matrice de type à coefficients dans un tableau de lignes et de colonnes de nombres dans



Exercices calcul matriciel

Exercices calcul matriciel Exercice 1 On considère les matrices : A = 0 1 2 3 et B = 4 5 6 ?3 Calculer les matrices suivantes : A+B B +A ?2B et 3A?2B Exercice 2 On considère les matrices : A = 0 1 2 3 et B = 4 5 2 3 1 Calculer les matrices suivantes : AB et BA 2 Commenter les résultats obtenus Exercice 3 On donne les matrices





Calculmatriciel - Université Grenoble Alpes

matriciel de Apar Bla matrice C ?M mp(R) dont le terme général c ik est dé?ni pourtouti= 1 metpourtoutk?1 ppar: c ik= Xn j=1 a ijb jk Nous insistons sur le fait que le produit ABde deux matrices n’est dé?ni que si le nombre de colonnes de Aet le nombre de lignes de Bsont les mêmes Observons



Searches related to calcul matriciel bts PDF

6 Version 18 septembre 2017 Chapitre 1 Calcul matriciel MATLAB Le logiciel MATLAB permet de manipuler facilement des matrices On entre les commandes suivantes pour l’exemple 1 2: >> A = [ 5 3 1; 4 -1 4 ] A = 5 3 1 4 -1 4 >> A(12) ans = 3 >> A = [ 1+1i 2; -2 1-1i ] A = 1 0000 + 1 0000i 2 0000 + 0 0000i-2 0000 + 0 0000i 1 0000 - 1 0000i

Comment calculer la moyenne d'un BTS ?

Au travers d'une simulation, notre simulateur de points vous permet de calculer votre moyenne du BTS CG grâce à un calcul reprenant la note et le coefficient de chaque matière. E1 1 - Culture générale et expression

Combien de fiches de mathématiques pour le niveau BTS ?

27 fiches de mathématiques pour le niveau Bts. BTS SIO Obligatoire Nouvelle Calédonie 2015 et son corrigé 2 BTS SIO Obligatoire Nouvelle Calédonie 2014 et son corrigé 2 BTS SIO Obligatoire Nouvelle Calédonie 2013 et son corrigé 2 Mot de passe oublié ? Pas de compte ?

Comment faire des exercices en mathématiques en BTS ?

Conformément aux orientations du nouveau programme de Mathématiques en BTS, le nouvel ouvrage de la collection Exos et Méthodes en BTS Groupements B, C et D propose de nombreux exercices à réaliser à l’aide des outils logiciels. - Des exercices variés et de difficulté graduée, classés par thème.

Comment calculer le résultat des épreuves du BTS ?

La simulation du résultat se fait automatiquement. Si vous voulez calculer vous-même votre moyenne ou vérifier les résultats obtenus à l’aide du simulateur, voici le détail des coefficients des épreuves du BTS CG. Comme vous pouvez le voir, les deux dernières lignes du tableau (EF1 et EF2) sont les épreuves facultatives du BTS CG.

UNIVERSITÉCLAUDEBERNARDLYON1

Licence Sciences, Technologies, Santé

Enseignement de mathématiques

des parcours Informatique

ANALYSE MATRICIELLE

ET ALGÈBRE LINÉAIREAPPLIQUÉE

- Notes de cours et de travaux dirigés -

PHILIPPEMALBOS

1. Ensembles et applications . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Les corps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

3. Les anneaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4. Les polynômes à une indéterminée . . . . . . . . . . . . . . . . . . . .

9

5. Arithmétique des polynômes . . . . . . . . . . . . . . . . . . . . . . .

12

6. Les fractions rationnelles . . . . . . . . . . . . . . . . . . . . . . . . .

19

1. La structure d"espace vectoriel . . . . . . . . . . . . . . . . . . . . . .

1

2. Bases et dimension d"un espace vectoriel . . . . . . . . . . . . . . . .

5

3. Somme de sous-espaces vectoriels . . . . . . . . . . . . . . . . . . . .

7

4. Les applications linéaires . . . . . . . . . . . . . . . . . . . . . . . . .

9

5. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

1. Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Produit de matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

3. Matrice d"une application linéaire . . . . . . . . . . . . . . . . . . . .

10

4. Trace d"une matrice . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

5. Noyau et image d"une matrice . . . . . . . . . . . . . . . . . . . . . .

15

6. Le rang d"une matrice . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

7. Opérations matricielles par blocs . . . . . . . . . . . . . . . . . . . . .

18

8. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

1. Définition récursive du déterminant . . . . . . . . . . . . . . . . . . .

1

2. Premières propriétés du déterminant . . . . . . . . . . . . . . . . . . .

3

3. Les formules de Cramer . . . . . . . . . . . . . . . . . . . . . . . . . .

8

4. Formulation explicite du déterminant . . . . . . . . . . . . . . . . . . .

10 1

2Table des matières

5. Calcul des déterminants . . . . . . . . . . . . . . . . . . . . . . . . . .

12

6. Calcul de l"inverse d"une matrice . . . . . . . . . . . . . . . . . . . . .

15

7. Déterminant d"un endomorphisme . . . . . . . . . . . . . . . . . . . .

17

8. Annexe : rappels sur les groupes de symétries . . . . . . . . . . . . . .

18

9. Annexe : déterminants et formes multilinéaires alternées . . . . . . . .

20

1. Équations d"évolution linéaire couplées . . . . . . . . . . . . . . . . .

1

2. Le découplage de système d"équations . . . . . . . . . . . . . . . . . .

5

3. La diagonalisation des matrices et des endomorphismes . . . . . . . . .

8

4. Marches sur un graphe et diagonalisation . . . . . . . . . . . . . . . .

11

5. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

1. Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Valeurs propres et espaces propres . . . . . . . . . . . . . . . . . . . .

5

3. Calcul des valeurs propres . . . . . . . . . . . . . . . . . . . . . . . .

9

4. Le cas des endomorphismes . . . . . . . . . . . . . . . . . . . . . . .

11

5. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

1. Trigonalisation des matrices . . . . . . . . . . . . . . . . . . . . . . .

1

2. Diagonalisation des matrices . . . . . . . . . . . . . . . . . . . . . . .

9

3. Une obstruction au caractère diagonalisable . . . . . . . . . . . . . . .

12

4. Caractérisation des matrices diagonalisables . . . . . . . . . . . . . . .

15

5. Matrices diagonalisables : premières applications . . . . . . . . . . . .

17

6. Trigonalisation et diagonalisation des endomorphismes . . . . . . . . .

20

7. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

1. Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Polynômes de matrices . . . . . . . . . . . . . . . . . . . . . . . . . .

3

3. Le lemme de décomposition en noyaux . . . . . . . . . . . . . . . . .

6

4. Le polynôme minimal . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

5. Le théorème de Cayley-Hamilton . . . . . . . . . . . . . . . . . . . . .

14

6. Le cas des endomorphismes . . . . . . . . . . . . . . . . . . . . . . .

21

7. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

1. Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Matrices nilpotentes . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

3. Les espaces spectraux . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

4. Décomposition spectrale géométrique . . . . . . . . . . . . . . . . . .

7

Table des matières1

5. Décomposition spectrale algébrique . . . . . . . . . . . . . . . . . . .

10

6. Calcul de la décomposition spectrale algébrique . . . . . . . . . . . . .

15

7. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

1. Calcul des puissances d"une matrice . . . . . . . . . . . . . . . . . . .

1

2. La fonction exponentielle . . . . . . . . . . . . . . . . . . . . . . . . .

4

3. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

1. Les suites récurrentes . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. La suite de Fibonacci (1202) . . . . . . . . . . . . . . . . . . . . . . .

3

3. Dynamique de populations . . . . . . . . . . . . . . . . . . . . . . . .

4

4. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

1. Systèmes différentiels linéaires à coefficients constants . . . . . . . . .

2

2. Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

3. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 Sommaire1. Ensembles et applications . . . . . . . . . . . . . . . . . . . . . . .1

2. Les corps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

3. Les anneaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4. Les polynômes à une indéterminée . . . . . . . . . . . . . . . . . .

9

5. Arithmétique des polynômes . . . . . . . . . . . . . . . . . . . . .

12

6. Les fractions rationnelles . . . . . . . . . . . . . . . . . . . . . . .

19 Ce chapitre contient peu de démonstrations, son rôle est de fixer les notations et de

rappeler les structures algébriques fondamentales, ainsi que les principaux résultats al- gébriques que nous utiliserons dans ce cours. Nous renvoyons le lecteur au cours de première année pour tout approfondissement.

§1 Ensembles et applications

0.1.1.Applications.-SoientAetBdeux ensembles. Uneapplication fdeAdansB

est un procédé qui à tout élementxdeAassocie un élément unique deB, notéf(x). On

notef:A!B, ouAf!B, ou encore f:A!B x!f(x):

On notef(A)l"image de l"ensembleA, définie par

f(A) =fyjy2B;9x2A;tel quey=f(x)g: 1

2CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES

L"image inverse d"un sous-ensembleYBest définie par f

1(Y) =fxjx2A;f(x)2Yg:

Une applicationf:A!Best diteinjectivesi,f(x) =f(y)impliquex=y. Elle est ditesurjectivesif(A) =B,i.e., pour touty2B, il existe unx2Atel quey=f(x). Une application est ditebijectivesi elle est à la fois injective et surjective. Sif:A!Betg:B!Csont deux applications, on notegf, ou encoregf, l"application, ditecomposée, définie par gf:A!C x!g(f(x)): La composée des applications est une opération associative, i.e., étant données trois applicationsAf!Bg!Ch!D, on a h(gf) = (hg)f:

0.1.2.Quelques ensembles fondamentaux de nombres.-Dans tout ce cours, nous

supposons connus les ensembles de nombres suivants et les opérations d"addition, de soustraction, de multiplication et de division sur ces ensembles : ?l"ensemble des entiers naturels, 0, 1, 2,:::, notéN, ?l"ensemble des entiers relatifs, notéZ, formé des entiers naturels et de leurs opposés, ?l"ensemble des rationnels, notéQ, formé des quotientspq , oùpetqsont des entiers relatifs, avecqnon nul, ?l"ensemble des réels, notéR, qui contient les nombres rationnels et les irrationnels, ?l"ensemble des complexes, notéC, formé des nombresa+ib, oùaetbsont des réels etiun complexe vérifianti2=1.

Sipetqsont deux entiers relatifs, on notera

Jp;qK=fa2Zjp6a6qg:

§2 Les corps

Uncorpsest un objet algébrique constitué d"un ensemble et de deux opérations sur cet ensemble, une addition et une multiplication, qui satisfont à certaines relations. Intu- itivement, cette structure est proche de notre intuition de nombres et des opérations que l"on peut leur appliquer. Avant d"énoncer les relations des deux opérations de la structure de corps, rappelons la structure de groupe. suivantes

CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES3

i)l"opération estassociative,i.e., pour tous élémentsa,betcdeG, a?(b?c) = (a?b)?c; ii)il existe un élémentedansG, appeléneutre, tel que, pour tout élémentadeG, a?e=e?a=a; iii)pour tout élémentadeG, il existe un élémentinverse, que nous noteronsa1, tel que a?a1=e=a1?a: Exercice 1.-On définit sur l"ensemble des nombres réels l"opération?en posant a?b=2a+2b:

1.Cette opération est-elle associative?

2.L"opération

a?b=2a+b est-elle associative?

Exercice 2.-

1.Montrer qu"un groupe possède un unique élément neutre.

2.Montrer que dans un groupe, l"inverse d"un élément est unique.

0.2.2.Exemples.-

1)Le groupetrivialest le groupe à un seul élément, l"élément neutre.

2)L"ensemble des entiersZforme un groupe pour l"addition usuelle. Il ne forme pas

un groupe pour la multiplication.

3)L"ensemble des nombres rationnelsQforme un groupe pour l"addition. L"ensem-

bleQf0gdes nombres rationnels non nul est un groupe pour la multiplication.

4)L"ensemble des complexes non nulsCf0g, muni de la multiplication usuelle des

complexes.

5)L"ensembleRndesn-uplets ordonnées

(x1;:::;xn) de nombres réels, muni de l"opération (x1;:::;xn)+(y1;:::;yn) = (x1+y1;:::;xn+yn); forme un groupe. Exercice 3.-Justifier toutes les propriétés précédentes. Dans le cas deRn, déterminer l"élément neutre du groupe et l"inverse d"unn-uplet(x1;:::;xn).

4CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES

0.2.3.Les groupes abéliens.-Un groupe est ditabélien, oucommutatif, si tous élé-

mentsaetbvérifient a?b=b?a:

Les groupes des exemples 0.2.2 sont abéliens.

Exercice 4.-Les opérations de l"exercice 1 sont-elles commutatives?

Exercice 5.-SoitXun ensemble.

1.Montrer que l"ensemble des permutations deX, i.e. des bijections deXdans lui-

même, forment un groupe.

2.Montrer que ce groupe n"est pas commutatif lorsqueXpossède au moins trois élé-

ments.

0.2.4.Les corps.-Uncorps(commutatif) est un ensembleKsur lequel une opération

d"addition(a;b)!a+bet une opération de multiplication(a;b)!absont définies et satisfont aux assertions suivantes : i)Kest un groupe abélien pour l"addition, ii)Kf0gest un groupe abélien pour la multiplication, iii)la multiplication est distributive par rapport à l"addition, i.e., pour tous élémentsa,quotesdbs_dbs44.pdfusesText_44
[PDF] prise de note rapide tableau abréviations

[PDF] sauzay programme

[PDF] programme voltaire

[PDF] un petit paragraphe sur l'environnement

[PDF] exemple de texte argumentatif sur l'environnement

[PDF] texte sur l'environnement

[PDF] texte argumentatif sur l'environnement 4am

[PDF] protection de l'environnement définition

[PDF] graphe probabiliste calculatrice

[PDF] graphe étiqueté

[PDF] una marcha por los derechos de los indigenas comprension escrita

[PDF] aire sous la courbe physique