[PDF] [PDF] Matrices - Exo7 - Cours de mathématiques





Previous PDF Next PDF



[PDF] Exercices calcul matriciel

Exercices calcul matriciel Exercice 1 Calculer les matrices suivantes : A + B B + A ?2B et 3A ? 2B Calculer la matrice M = 3A + 2B ? 5I



[PDF] Calcul matriciel - Nathalie Daval

BTS DOMOTIQUE Calcul matriciel 2008-2010 I Matrices Définition 1 Soit n et p deux entiers naturels non nuls Une matrice n × p est un tableau à n 



[PDF] Chapitre 1 - Calcul matriciel 1 Notion de matrice - A Schreck

BTS SIO 2 Si la matrice comporte n lignes et p colonnes on dit que la matrice est de dimension (ou 4 Calcul matriciel à la calculatrice



[PDF] Calcul matriciel - PanaMaths

BTS Alternance Février 2004 1 Informatique de Gestion Calcul matriciel Matrices > Définition Soit m et n deux entiers naturels non nuls



[PDF] Calcul matriciel

Calcul matriciel UJF Grenoble 1 Cours 1 1 Opérations sur les matrices Etant donnés deux entiers m et n strictement positifs une matrice à m lignes et n



[PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

3) Vérifier le calcul en effectuant les calculs des matrices MM-1 et M-1M Exercice 17 – Soit M la matrice de M3(R) définie par : M =



[PDF] Introduction au calcul matriciel et `a ses applications

Définition 1 1 1 On appelle matrice `a m lignes et n colonnes `a coefficients les calculs ou de réduire les formules Exemple



[PDF] ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

Calcul de l'inverse — Déterminer si une matrice est inversible et le calcul des inverses sont des problèmes importants d'algèbre linéaire



[PDF] Matrices - Exo7 - Cours de mathématiques

Dans le calcul matriciel la matrice nulle joue le rôle du nombre 0 pour les réels 1 3 Addition de matrices Définition 3 (Somme de deux matrices)



Cours BTS Calcul matriciel - mathematicefr

Cours BTS Calcul matriciel S B Lycée des EK S B Présentation en Latex avec Beamer Dé?nitions Egalité de deux matrices Somme de deux matrices



BTS CG - Simulateur de notes pour prioriser ses révisions

Calcul matriciel Dans ce cours désigne ou un corps commutatif quelconque I – Matrices et applications Les matrices sont un outil de calcul et de représentation des applications linéaires 1 Définitions Soient donnés On appelle matrice de type à coefficients dans un tableau de lignes et de colonnes de nombres dans



Exercices calcul matriciel

Exercices calcul matriciel Exercice 1 On considère les matrices : A = 0 1 2 3 et B = 4 5 6 ?3 Calculer les matrices suivantes : A+B B +A ?2B et 3A?2B Exercice 2 On considère les matrices : A = 0 1 2 3 et B = 4 5 2 3 1 Calculer les matrices suivantes : AB et BA 2 Commenter les résultats obtenus Exercice 3 On donne les matrices





Calculmatriciel - Université Grenoble Alpes

matriciel de Apar Bla matrice C ?M mp(R) dont le terme général c ik est dé?ni pourtouti= 1 metpourtoutk?1 ppar: c ik= Xn j=1 a ijb jk Nous insistons sur le fait que le produit ABde deux matrices n’est dé?ni que si le nombre de colonnes de Aet le nombre de lignes de Bsont les mêmes Observons



Searches related to calcul matriciel bts PDF

6 Version 18 septembre 2017 Chapitre 1 Calcul matriciel MATLAB Le logiciel MATLAB permet de manipuler facilement des matrices On entre les commandes suivantes pour l’exemple 1 2: >> A = [ 5 3 1; 4 -1 4 ] A = 5 3 1 4 -1 4 >> A(12) ans = 3 >> A = [ 1+1i 2; -2 1-1i ] A = 1 0000 + 1 0000i 2 0000 + 0 0000i-2 0000 + 0 0000i 1 0000 - 1 0000i

Comment calculer la moyenne d'un BTS ?

Au travers d'une simulation, notre simulateur de points vous permet de calculer votre moyenne du BTS CG grâce à un calcul reprenant la note et le coefficient de chaque matière. E1 1 - Culture générale et expression

Combien de fiches de mathématiques pour le niveau BTS ?

27 fiches de mathématiques pour le niveau Bts. BTS SIO Obligatoire Nouvelle Calédonie 2015 et son corrigé 2 BTS SIO Obligatoire Nouvelle Calédonie 2014 et son corrigé 2 BTS SIO Obligatoire Nouvelle Calédonie 2013 et son corrigé 2 Mot de passe oublié ? Pas de compte ?

Comment faire des exercices en mathématiques en BTS ?

Conformément aux orientations du nouveau programme de Mathématiques en BTS, le nouvel ouvrage de la collection Exos et Méthodes en BTS Groupements B, C et D propose de nombreux exercices à réaliser à l’aide des outils logiciels. - Des exercices variés et de difficulté graduée, classés par thème.

Comment calculer le résultat des épreuves du BTS ?

La simulation du résultat se fait automatiquement. Si vous voulez calculer vous-même votre moyenne ou vérifier les résultats obtenus à l’aide du simulateur, voici le détail des coefficients des épreuves du BTS CG. Comme vous pouvez le voir, les deux dernières lignes du tableau (EF1 et EF2) sont les épreuves facultatives du BTS CG.

Matrices

ramène à des manipulations sur les matrices. Ceci est vrai en particulier pour la résolution des systèmes linéaires.

Dans ce chapitre,Kdésigne un corps. On peut penser àQ,RouC.

1. Définition

1.1. DéfinitionDéfinition 1.

UnematriceAest un tableau rectangulaire d"éléments deK. Elle est dite detaillenpsi le tableau possèdenlignes etpcolonnes. Les nombres du tableau sont appelés lescoefficientsdeA.

Le coefficient situé à lai-ème ligne et à laj-ème colonne est notéai,j.Un tel tableau est représenté de la manière suivante :

A=0 B

BBBBB@a

1,1a1,2...a1,j...a1,p

a

2,1a2,2...a2,j...a2,p

a i,1ai,2...ai,j...ai,p a n,1an,2...an,j...an,p1 C

CCCCCAouA=ai,j

16i6n

16j6pouai,j.

Exemple 1.

A=12 5

0 3 7 est une matrice 23 avec, par exemple,a1,1=1 eta2,3=7.

Encore quelques définitions :Définition 2.

Deux matrices sontégaleslorsqu"elles ont la même taille et que les coefficients correspondants sont égaux.

L"ensemble des matrices ànlignes etpcolonnes à coefficients dansKest notéMn,p(K). Les éléments deMn,p(R)

MATRICES1. DÉFINITION2sont appelésmatrices réelles.1.2. Matrices particulières Voici quelques types de matrices intéressantes :

•Sin=p(même nombre de lignes que de colonnes), la matrice est ditematrice carrée. On noteMn(K)au lieu de

Mn,n(K).

0 B BB@a

1,1a1,2...a1,n

a

2,1a2,2...a2,n............

a n,1an,2...an,n1 C CCA Les élémentsa1,1,a2,2,...,an,nforment ladiagonale principalede la matrice. Une matrice qui n"a qu"une seule ligne (n=1) est appeléematrice ligneouvecteur ligne. On la note

A=a1,1a1,2...a1,p.

De même, une matrice qui n"a qu"une seule colonne (p=1) est appeléematrice colonneouvecteur colonne. On

la note A=0 B BB@a 1,1 a

2,1...

a n,11 C CCA.

La matrice (de taillenp) dont tous les coefficients sont des zéros est appelée lamatrice nulleet est notée0n,p

ou plus simplement 0. Dans le calcul matriciel, la matrice nulle joue le rôle du nombre 0 pour les réels.

1.3. Addition de matricesDéfinition 3(Somme de deux matrices).

SoientAetBdeux matrices ayant la même taillenp. LeursommeC=A+Best la matrice de taillenpdéfinie

par c ij=aij+bij.

En d"autres termes, on somme coefficients par coefficients. Remarque : on note indifféremmentaijoùai,jpour les

coefficients de la matriceA.

Exemple 2.

SiA=32

1 7 etB=0 5 21
alorsA+B=3 3 3 6

Par contre siB0=2

8 alorsA+B0n"est pas définie.Définition 4(Produit d"une matrice par un scalaire). Le produit d"une matriceA=aijdeMn,p(K)par un scalaire2Kest la matriceaijformée en multipliant chaque coefficient deApar. Elle est notéeA(ou simplementA).Exemple 3.

SiA=1 2 3

0 1 0 et=2 alorsA=2 4 6 0 2 0 La matrice(1)Aest l"opposéedeAet est notéeA. LadifférenceABest définie parA+(B).

MATRICES2. MULTIPLICATION DE MATRICES3

Exemple 4.

SiA=21 0

45 2
etB=1 4 2 75 3
alorsAB=352 3 01 L"addition et la multiplication par un scalaire se comportent sans surprises :Proposition 1. Soient A, B et C trois matrices appartenant à M n,p(K). Soient2Ket2Kdeux scalaires. 1.

A +B=B+A : la somme est commutative,

2.

A +(B+C) = (A+B)+C : la somme est associative,

3. A +0=A : la matrice nulle est l"élément neutre de l"addition,

4.(+)A=A+A,

5.(A+B) =A+B.Démonstration.Prouvons par exemple le quatrième point. Le terme général de(+)Aest égal à(+)aij. D"après

les règles de calcul dansK,(+)aijest égal àaij+aijqui est le terme général de la matriceA+A.Mini-exercices.

1.

SoientA=

€7 20114Š

,B=

€1 2 32 3 13 2 1Š

,C=

€2160 33 12Š

,D=12

1 0 10 1 01 1 1Š,E=

€1 23 08 6Š

. Calculer toutes les sommes possibles de deux de ces matrices. Calculer 3A+2Cet 5B4D. Trouvertel queACsoit la matrice nulle. 2.

Montrer que si A+B=A, alorsBest la matrice nulle.

3. Que vaut0A? et1A? Justifier l"affirmation :(A) = ()A. Idem avecnA=A+A++A(noccurrences deA).2. Multiplication de matrices

2.1. Définition du produit

Le produitABde deux matricesAetBest défini si et seulement si le nombre de colonnes deAest égal au nombre de

lignes deB.Définition 5(Produit de deux matrices). SoientA= (aij)une matricenpetB= (bij)une matricepq. Alors le produitC=ABest une matricenq dont les coefficientscijsont définis par :c ij=p X k=1a ikbkjOn peut écrire le coefficient de façon plus développée, à savoir : c ij=ai1b1j+ai2b2j++aikbkj++aipbpj. Il est commode de disposer les calculs de la façon suivante. 0 B B@ 1 C CA B A!0 B

B@ 1

C CA0 B B@j j cij1 C CA AB

MATRICES2. MULTIPLICATION DE MATRICES4Avec cette disposition, on considère d"abord la ligne de la matriceAsituée à gauche du coefficient que l"on veut

calculer (ligne représentée par desdansA) et aussi la colonne de la matriceBsituée au-dessus du coefficient que

l"on veut calculer (colonne représentée par desdansB). On calcule le produit du premier coefficient de la ligne par

le premier coefficient de la colonne (ai1b1j), que l"on ajoute au produit du deuxième coefficient de la ligne par le

deuxième coefficient de la colonne (ai2b2j), que l"on ajoute au produit du troisième...

2.2. Exemples

Exemple 5.

A=1 2 3

2 3 4 B=0 @1 2 1 1 1 11 A

On dispose d"abord le produit correctement (à gauche) : la matrice obtenue est de taille22. Puis on calcule chacun

des coefficients, en commençant par le premier coefficientc11=11+2(1) +31=2(au milieu), puis les autres (à droite). 0 @1 2 1 1 1 11 A 1 2 3

2 3 4

c11c12 c

21c220

@12 11 1 1 1 A 1 2 3

2 3 4

2c12 c

21c220

@1 2 1 1 1 11 A 1 2 3

2 3 4

2 7 3 11 Un exemple intéressant est le produit d"un vecteur ligne par un vecteur colonne : u=a1a2anv=0 B BB@b 1 b 2... b n1 C CCA

Alorsuvest une matrice de taille11dont l"unique coefficient esta1b1+a2b2++anbn. Ce nombre s"appelle le

produit scalairedes vecteursuetv.

Calculer le coefficientcijdans le produitABrevient donc à calculer le produit scalaire des vecteurs formés par la

i-ème ligne deAet laj-ème colonne deB.

2.3. Pièges à éviter

Premier piège. Le produit de matrices n"est pas commutatif en général.

En effet, il se peut queABsoit défini mais pasBA, ou queABetBAsoient tous deux définis mais pas de la même taille.

Mais même dans le cas oùABetBAsont définis et de la même taille, on a en généralAB6=BA.

Exemple 6.

5 1 32
2 0 4 3 =14 3 26
mais2 0 4 3 5 1 32
=10 2 292

Deuxième piège.AB=0n"implique pasA=0ouB=0.

Il peut arriver que le produit de deux matrices non nulles soit nul. En d"autres termes, on peut avoirA6=0etB6=0

maisAB=0.

Exemple 7.

A=01 0 5 B=23 0 0 etAB=0 0 0 0 Troisième piège.AB=ACn"implique pasB=C.On peut avoirAB=ACetB6=C.

MATRICES2. MULTIPLICATION DE MATRICES5

Exemple 8.

A=01 0 3 B=41 5 4 C=2 5 5 4 etAB=AC=54 15 12

2.4. Propriétés du produit de matrices

Malgré les difficultés soulevées au-dessus, le produit vérifie les propriétés suivantes :Proposition 2.

1.

A (BC) = (AB)C : associativité du produit,

2. A (B+C) =AB+AC et(B+C)A=BA+CA : distributivité du produit par rapport à la somme, 3.

A 0=0et0A=0.Démonstration.PosonsA= (aij)2Mn,p(K),B= (bij)2Mp,q(K)etC= (cij)2Mq,r(K). Prouvons queA(BC) = (AB)C

en montrant que les matricesA(BC)et(AB)Cont les mêmes coefficients.

Le terme d"indice(i,k)de la matriceABestxik=p

X `=1a i`b`k. Le terme d"indice(i,j)de la matrice(AB)Cest donc q X k=1x ikckj=q X k=1‚ pX `=1a i`b`kŒ c kj.

Le terme d"indice(`,j)de la matriceBCesty`j=q

X k=1b `kckj. Le terme d"indice(i,j)de la matriceA(BC)est donc p X `=1a i`‚ qX k=1b `kckjŒ

Comme dansKla multiplication est distributive et associative, les coefficients de(AB)CetA(BC)coïncident. Les

autres démonstrations se font comme celle de l"associativité.2.5. La matrice identité La matrice carrée suivante s"appelle lamatrice identité: I n=0 B

BB@1 0 ... 0

0 1 ... 0

0 0 ... 11

C CCA

Ses éléments diagonaux sont égaux à1et tous ses autres éléments sont égaux à0. Elle se noteInou simplementI.

Dans le calcul matriciel, la matrice identité joue un rôle analogue à celui du nombre1pour les réels. C"est l"élément

neutre pour la multiplication. En d"autres termes :Proposition 3.

Si A est une matrice np, alors

I nA=A et AIp=A.Démonstration.

Nous allons détailler la preuve. SoitA2Mn,p(K)de terme généralaij. La matrice unité d"ordrepest

telle que tous les éléments de la diagonale principale sont égaux à 1, les autres étant tous nuls.

On peut formaliser cela en introduisant le symbole de Kronecker. Siietjsont deux entiers, on appellesymbole de

Kronecker, et on notei,j, le réel qui vaut 0 siiest différent dej, et 1 siiest égal àj. Donc

i,j=¨0 sii6=j

1 sii=j.

Alors le terme général de la matrice identitéIpesti,javecietjentiers, compris entre 1 etp.

MATRICES2. MULTIPLICATION DE MATRICES6La matrice produitAIpest une matrice appartenant àMn,p(K)dont le terme généralcijest donné par la formule

cij= pX k=1a ikkj . Dans cette somme,ietjsont fixés etkprend toutes les valeurs comprises entre1etp. Sik6=jalors

kj=0, et sik=jalorskj=1. Donc dans la somme qui définitcij, tous les termes correspondant à des valeurs de

kdifférentes dejsont nuls et il reste donccij=aijjj=aij1=aij. Donc les matricesAIpetAont le même terme

général et sont donc égales. L"égalitéInA=Ase démontre de la même façon.2.6. Puissance d"une matrice

Dans l"ensembleMn(K)des matrices carrées de taillennà coefficients dansK, la multiplication des matrices est

une opération interne : siA,B2Mn(K)alorsAB2Mn(K). En particulier, on peut multiplier une matrice carrée par elle-même : on noteA2=AA,A3=AAA. On peut ainsi définir les puissances successives d"une matrice :Définition 6. Pour toutA2Mn(K), on définit les puissances successives deAparA0=InetAp+1=ApApour toutp2N.

Autrement dit,Ap=AAA|{z}

pfacteurs.Exemple 9.

On cherche à calculerApavecA=0

@1 0 1 01 0

0 0 21

A . On calculeA2,A3etA4et on obtient : A 2=0 @1 0 3 0 1 0

0 0 41

A

A3=A2A=0

@1 0 7 01 0

0 0 81

A

A4=A3A=0

@1 0 15 0 1 0

0 0 161

A L"observation de ces premières puissances permet de penser que la formule est :Ap= 0 @1 0 2 p1

0(1)p0

0 0 2 p1 A . Démon- trons ce résultat par récurrence.

Il est vrai pourp=0(on trouve l"identité). On le suppose vrai pour un entierpet on va le démontrer pourp+1. On

a, d"après la définition, A p+1=ApA=0quotesdbs_dbs44.pdfusesText_44
[PDF] prise de note rapide tableau abréviations

[PDF] sauzay programme

[PDF] programme voltaire

[PDF] un petit paragraphe sur l'environnement

[PDF] exemple de texte argumentatif sur l'environnement

[PDF] texte sur l'environnement

[PDF] texte argumentatif sur l'environnement 4am

[PDF] protection de l'environnement définition

[PDF] graphe probabiliste calculatrice

[PDF] graphe étiqueté

[PDF] una marcha por los derechos de los indigenas comprension escrita

[PDF] aire sous la courbe physique