[PDF] ALGEBRE LINEAIRE Cours et exercices





Previous PDF Next PDF



Applications linéaires matrices

https://licence-math.univ-lyon1.fr/lib/exe/fetch.php?media=exomaths:exercices_corriges_application_lineaire_et_determinants.pdf



ALGEBRE LINEAIRE Cours et exercices

22 mai 2014 £(E) est l'ensemble des endomorphismes de E. 3. Applications linéaires en dimension finie. 3.1. Propriétés. Soit f une application linéaire de E ...



Polycopié MAT101

29 mar. 2023 La composée de deux applications linéaires est encore une application linéaire. ... . Dans cet exercice on note X l'application IdF2 . 1 ...



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

Ces deux références proposent un cours complété d'exercices avec solutions la sec- Exercice 33.— Mêmes questions avec l'application u définie par u.. x.



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

Notion de Matrice Associée à une Application Linéaire et. Calcul Algébrique sur les Matrices avec Exercices Corrigés. Soit IK un corps commutatif. Soit E et F 



Applications linéaires

Exercice 3. Soit E un espace vectoriel et soient E1 et E2 deux sous-espaces vectoriels de dimension finie de E on définit l'application f : E1 ×E2 → E par f( 



[PDF] Algèbre - Exo7 - Cours de mathématiques

application linéaire 193 d'une famille



Cours de mathématiques - Exo7

Une application linéaire de E dans E est appelée endomorphisme de E. L'ensemble des endomorphismes de E est noté. (E). Mini-exercices. Montrer que les 



CPGE Brizeux

1 Applications directes du cours. Exercice no 2. Décider si les applications suivantes sont linéaires ou non. Pour celles qui sont linéaires donner des bases 



Untitled

La même formule définit une application linéaire de C2 dans C. 1. François Liret et Dominique Martinais. Algèbre 1ère année - Cours et exercices avec solutions.



ALGEBRE LINEAIRE Cours et exercices

22 mai 2014 £(E) est l'ensemble des endomorphismes de E. 3. Applications linéaires en dimension finie. 3.1. Propriétés. Soit f une application linéaire de E ...



Applications linéaires matrices

http://licence-math.univ-lyon1.fr/lib/exe/fetch.php?media=exomaths:exercices_corriges_application_lineaire_et_determinants.pdf



Chapitre VI Applications linéaires

On vérifie que la formule proposée est une application linéaire (exercice). Toutes les applications linéaires (en dimension finie) peuvent donc être définies 



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

application est dite bijective si elle est à la fois injective et surjective. Ces deux références proposent un cours complété d'exercices avec solutions ...



Polycopié MAT101

25 févr. 2021 Applications linéaires et sous-espaces noyau et image. ... servent de modèle pour les exercices de raisonnement.



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

Notion de Matrice Associée à une Application Linéaire et Calcul. Algébrique sur les Matrices avec Exercices Corrigés. 57. 1. Espace vectoriel des matrices.



Algèbre - Cours de première année

activement par vous-même des exercices sans regarder les solutions. Exemples d'applications linéaires . ... Matrice d'une application linéaire .



Applications linéaires

Soit E un espace vectoriel de dimension n et ? une application linéaire de E dans Indication pour l'exercice 2 ? ... Ce qui est un résultat du cours.



LALGÈBRE LINÉAIRE POUR TOUS

La lecture de ce cours peut et doit donc se faire en continu suivant le schéma Définition-Propriétés-Exercices. Le lecteur ou la lectrice est très fortement 



Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et

vectoriels et applications linéaires. Correction des exercices. Exercice 3 : Soit e un K-espace vectoriel de dimension finie n ? N? et f.



Applications linéaires matrices déterminants

1 1 DÉFINITION ET PREMIERS EXEMPLES Dé?nition (Application linéaire) Soient E et F deux K-espaces vectoriels On appelle application linéaire de E dans F toute application f: E ??F qui préserve les combinaisons linéaires : ?x y ?E ??µ?K f (?x +µy)=?f (x)+µf (y) L’ensemble des applications linéaires de E dans F



Applications linéaires matrices déterminants

1 Montrer que est une application linéaire 2 Déterminer le noyau et l’image de 3 )A-t-on ker( )? ( =?4? Allez à : Correction exercice 12 Exercice 13 Soit l’application :?43 définie pour tout =( )??4 par : ( )=( + + + + + ) 1 Montrer que est une application linéaire 2 Déterminer une base de ker( ) 3



V Applications linéaires - Université Sorbonne Paris Nord

Algèbre 1ère année - Cours et exercices avec La rotation f de R2 de centre M et d’angle est-elle une application Reprenons l’application linéaire f de



Searches related to application linéaire cours et exercices

Calculer la matrice associée à l’application linéaire f +g relativement à la base canonique de 2 Réponse 4 2 Multiplication par un scalaire Proposition : Soit f:E?F une application linéaire ayant M pour matrice associée relativement aux bases BE et BF Soit ?? alors l’application linéaire ?f a pour matrice associée ?M

ISPB, Faculté de Pharmacie de Lyon Année 2014 - 2015

Filière ingénieur

3

ème année de pharmacie

ALGEBRE LINEAIRE

Cours et exercices

L. Brandolese

M-A. Dronne

Cours d"algèbre linéaire

1. Espaces vectoriels

2. Applications linéaires

3. Matrices

4. Déterminants

5. Diagonalisation

1

Chapitre 1

Espaces vectoriels

1. Définition

Soit K un corps commutatif (K = R ou C)

Soit E un ensemble dont les éléments seront appelés des vecteurs. On munit E de : · la loi interne " + » (addition vectorielle) : E)yx(,E)y,x(2Î+Î" · la loi externe " . » (multiplication par un scalaire) :

E)x.( K,λE,xÎlÎ"Î"

(E, +, .) est un espace vectoriel (ev) sur K (K-ev) si :

1) (E,+) est un groupe commutatif

· l"addition est associative : )zy(xz)yx(,E)z,y,x(3++=++Î"

· l"addition est commutative :

xyy x,E)y,x(2+=+Î"

· Il existe un élément neutre

E0EÎ tq x0 xE,xE=+Î"

E0x"x"x x tqE x"! E,x=+=+Î$Î" (x" est appelé l"opposé de x et se note (-x))

2) la loi externe doit vérifier :

2E)y,x( K,λÎ"Î",y.x.)yx.(l+l=+l

Ex ,K),λ(2

21Î"Îl",x.x.x).(2121l+l=l+l

Ex ,K),λ(2

21Î"Îl",x)..()x..(2121ll=ll

x1.x E,x=Î"

Propriétés :

Si E est un K-ev, on a :

1)

KλE,xÎ"Î",

EE0ou x0λ0λ.x

2) )x.()x.(x).(-l=l-=l-

Exemple :

Soit K = R et E = Rn. (Rn,+, . ) est un R-ev

1) loi interne :

)x..., ,x,(x x,Rxn21n=Î" et )y..., ,y,(yy ,Ryn21n=Î" )yx..., ,yx,y(xyxnn2211+++=+

2) loi externe :

)x..., ,x,x(.x : R ,Rxn21nlll=lÎl"Î" 2

2. Sous espace vectoriel (sev)

Définition :

Soit E un K-ev et

EFÌ. F est un sev si :

· F ¹ AE

· la loi interne " + » est stable dans F :

F)yx(,F)y,x(2Î+Î"

· la loi externe " . » est stable dans F :

F)x.( K,λF,xÎlÎ"Î"

Remarque : Si E est un K-ev, {}E0 et E sont 2 sev de E

Exercice 1 :

Soit E l"ensemble défini par {}0xx2x/R)x,x,x(E3213

321=-+Î=

Montrer que E est un sev de R

3

Exercice 2 :

Soit E un ev sur K et F

1 et F2 deux sev de E. Montrer que 21FFI est un sev de E

3. Somme de 2 sev

Théorème :

Soit F

1 et F2 deux sev de E. On appelle somme des sev F1 et F2 l"ensemble noté (F1 + F2) défini par :

{}2121Fyet Fy / xxFFÎÎ+=+

On peut montrer que F1 + F2 est un sev de E

Somme directe de sev :

Définition :

On appelle somme directe la somme notée F

1 + F2

E2121

210FFFFFFFF

I Remarque : Si F = E, on dit que F1 et F2 sont supplémentaires

Propriété :

F = F

1 + F2 ssi FzÎ", z s"écrit de manière unique sous la forme z = x + y avec 1FxÎ et 2FyÎ

Exercice 3 :

{}R xavec ,0,0)(xF111Î= et {}2

32322R)x,(x avec )x,x(0,FÎ=

Montrer que F

1 et F2 sont supplémentaires de R3 c"est-à-dire F1 + F2 = R3

3

4. Combinaisons linéaires, familles libres, liées et génératrices

Définition :

Soit E un K-ev et

{}IiixÎ une famille d"éléments de E. On appelle combinaison linéaire de la famille {}IiixÎ, l"expression ∑ Îl

Iiiix avec KiÎl

Définition :

On dit que la famille

{}IiixÎ est libre si Ii 00xiEIiiiÎ"=l⇒=l∑

Définition :

On dit que la famille

{}IiixÎ est liée si elle n"est pas libre : ()()EIiiip10xλ tq0,...,0,...,=¹ll$∑

Définition :

On appelle famille génératrice de E une famille telle que tout élément de E est une combinaison

linéaire de cette famille : ()∑

IiiiIiixλ x tqλ ,Ex

Définition :

On dit que la famille

{}IiixÎ est une base de E si {}IiixÎ est une famille libre et génératrice

Propriété :

On dit que la famille

{}IiixÎ est une base de E ssi ExÎ", x s"écrit de manière unique ∑

Iiiixλx

Démonstration (1) ⇒ (2) (D1)

Exercice 4 :

Soit 2

1R)0,1(eÎ= et 2

2R)1,0(eÎ=. La famille {}21e,e est-elle une base ?

Remarque :

La famille {}n21e,...,e,e avec )1,...,0,0(e),...,0,...,1,0(e),0,...,0,1(en21=== constitue la base canonique

de Rn

Propriétés :

{}x est une famille libre 0x¹Û · Toute famille contenant une famille génératrice est génératrice · Toute sous-famille d"une famille libre est libre · Toute famille contenant une famille liée est liée

· Toute famille

{}p21v,...,v,v dont l"un des vecteurs vi est nul, est liée 4

5. Espace vectoriel de dimension finie

Définitions :

· Soit {}IiixÎ une famille S d"éléments de E. On appelle cardinal de S le nombre d"éléments de S

· E est un ev de dimension finie si E admet une famille génératrice de cardinal fini.

Théorème :

Toutes les bases d"un même ev E ont le même cardinal. Ce nombre commun est appelé la dimension

de E. On note dimE

Corollaire :

Dans un ev de dimension n, on a :

- Toute famille libre a au plus n éléments - Toute famille génératrice a au moins n éléments

Remarque : si dimE = n, pour montrer qu"une famille de n éléments est une base de E, il suffit de

montrer qu"elle est libre ou bien génératrice.

Exercice 5 :

Dans R

3, soit e1= (1,0,0), e2= (1,0,1) et e3= (0,1,2)

Montrer que

{}321e,e,e est une base de R3

Théorème de la base incomplète :

Soit E un ev de dimension finie et L une famille libre de E. Alors il existe une base B de cardinal fini

qui contient L.

6. Caractérisation des sev de dimension finie

Proposition :

Soit E un K-ev de dimension n et F un sev de E :

EdimFdim£

EFEdimFdim=Û=

6.1. Coordonnées d"un vecteur

Définition :

Soit E un K-ev de dimension n et

{}n1x,...,xB= une base de E (c"est-à-dire ExÎ", x s"écrit de manière unique =l= n 1i iixx), les scalaires l1, ...,ln sont appelés les coordonnées de x dans la base B. 5

6.2. Rang d"une famille de vecteurs. Sous-espaces engendrés

Définition :

Soit {}p1x,...,xG= Le sev F des combinaisons linéaires des vecteurs x

1, ..., xp est appelé sous-espace engendré par G et

se note : {}p1x,...,xVectVectGF== =p 1ip p1iiR)λ,...,(λ avec xλx/ExF Remarque : {}{}p1p1x,...,xx,...,xVectFÛ= est une famille génératrice de F

Définition :

La dimension de F s"appelle le rang de la famille G : dimF = rgG

Propriétés : Soit {}p1x,...,xG=

prgG£

Û=prgG G est libre

· On ne change pas le rang d"une famille de vecteurs : - en ajoutant à l"un d"eux une combinaison linéaire des autres - en multipliant l"un d"eux par un scalaire non nul - en changeant l"ordre des vecteurs

6.3. Détermination du rang d"une famille de vecteurs

Théorème :

Soit E un K-ev de dimension finie n et

{}n1e,...,eB= une base de E. Si {}p1x,...,x est une famille d"éléments de E (np£) telle que les xi s"écrivent ∑ =a= n 1j ji,jiex avec

0i,i¹a et 0i,j=a pour j < i, alors {}p1x,...,x est libre.

Application : Méthode des zéros échelonnés

Soit E un ev de dimension finie n et

{}n1e,...,eB= une base de E

Pour déterminer le rang d"une famille

{}p1x,...,xG= avec np£ :

1) On écrit sur p colonnes et n lignes les vecteurs x

quotesdbs_dbs49.pdfusesText_49
[PDF] application linéaire cours exo7

[PDF] application linéaire définition

[PDF] application linéaire exercices corrigés

[PDF] application matrice inversible + corrigé

[PDF] application piano numérique

[PDF] application sportcash pour android

[PDF] application working holiday visa australia

[PDF] application zimbra mail

[PDF] applications linéaires exercices corrigés

[PDF] bareme note saut en longueur

[PDF] apport de la civilisation greco-romaine ? l'humanité

[PDF] apport du controle de gestion dans la performance de l'entreprise

[PDF] apposition mention de divorce sur acte de naissance

[PDF] appréciation bulletin maternelle

[PDF] appréciation bulletin prof principal