[PDF] Matrice dune application linéaire





Previous PDF Next PDF



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Exercice 12 – Soit A et B deux matrices carrées de même ordre on suppose que la matrice. AB est inversible d'inverse la matrice C. Montrer alors que B est 



Applications linéaires matrices

http://licence-math.univ-lyon1.fr/lib/exe/fetch.php?media=exomaths:exercices_corriges_application_lineaire_et_determinants.pdf



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Exercice 12 – Soit A et B deux matrices carrées de même ordre on suppose que la matrice. AB est inversible d'inverse la matrice C. Montrer alors que B est 



Matrice dune application linéaire

Vérifier que P est inversible et calculer P?1. Quelle relation lie A B



PCSI1-PCSI2 Corrigé du DS 9 2014-2015 Problème 1 Introduction

Soit P une matrice inversible de Mn(R) : montrer que la matrice PL1AP possède pour tout üx ? F û(üx) := u(üx)



fic00056.pdf

et trouver une matrice P inversible telle que A = PBP?1. 4. Ecrire la décomposition de Dunford de B (justifier). 5. Calculer expB. Correction ?.



Corrigé TD 3 Chapitre 1 Semestre 2-2015/2016 - S.O.S. MATH

Calculer de deux façons la matrice inverse de B puis de A. Première méthode pour B : avec la matrice adjointe. On peut donc utiliser la formule : 1 det 



Réduction

Pour f élément de E ?(f) est l'application définie par : communes si et seulement si la matrice ?A(B) est inversible. Correction ?. [005678].



Feuille dexercices no 6 - Matrices

Si C = 0 et C = ?In alors d'après la question précédente C n'est pas inversible. Exercice 19 - Correction. (retour à l'exercice 19). On tente de résoudre les 



1.4 Normes et conditionnement dune matrice

Corrigé détaillé en page 88. On note · une norme matricielle sur Mn(IR). Soit A ? Mn(IR) une matrice carrée inversible cond(A) 



Correction du TD 6 Matrices inversibles et applications

1 Justi?er que P est une matrice inversible et déterminer son inverse 2 Véri?er l’égalité PAP?1 = D 3 Démontrer que ?n n ? N: PAnP?1 = Dn 4 En déduire la forme explicite de la matrice An pour tout entier naturel n Correction 1 La matrice P a pour déterminant det(P) = 2?3 = ?1 6= 0 donc P est inversible et P



Chapitre 3bis : Applications linéaires et Matrices

Calculer la matrice associée à l’application linéaire f +g relativement à la base canonique de 2 Réponse 4 2 Multiplication par un scalaire Proposition : Soit f:E?F une application linéaire ayant M pour matrice associée relativement aux bases BE et BF Soit ?? alors l’application linéaire ?f a pour matrice associée ?M



Corrigé TD 3 Chapitre 1 Semestre 2-2015/2016

1 Vérifier l'inversibilité des matrices suivantes : A=(1 1 1 1 2 ?1 1 3 2) et B=(2 2 3 4) Les matrices sont inversibles si leur déterminant est non nul det(A)= 1 1 1 1 2 ?1 1 3 2 Appliquons : C2 C2-C1 : det(A)= 1 0 1 1 1 ?1 1 2 2 puis C3 C3-C1 : det(A)= 1 0 0 1 1 ?2 1 2 1 =(?1)1+1×1×1 ?2 2 1=1+4=5?0 Ainsi A

Exo7

Matrice d"une application linéaire

Corrections d"Arnaud Bodin.

Exercice 1SoitR2muni de la base canoniqueB= (~i;~j). Soitf:R2!R2la projection sur l"axe des abscissesR~i

parallèlement àR(~i+~j). Déterminer MatB;B(f), la matrice defdans la base(~i;~j).

Même question avec Mat

B0;B(f)oùB0est la base(~i~j;2~i+3~j)deR2. Même question avec MatB0;B0(f).

Soient trois vecteurse1;e2;e3formant une base deR3. On notefl"application linéaire définie parf(e1) =e3,

f(e2) =e1+e2+e3etf(e3) =e3. 1. Écrire la matrice Adefdans la base(e1;e2;e3). Déterminer le noyau de cette application. 2. On pose f1=e1e3,f2=e1e2,f3=e1+e2+e3. Calculere1;e2;e3en fonction def1;f2;f3. Les vecteursf1;f2;f3forment-ils une base deR3? 3. Calculer f(f1);f(f2);f(f3)en fonction def1;f2;f3. Écrire la matriceBdefdans la base(f1;f2;f3)et trouver la nature de l"applicationf. 4.

On pose P=0

@1 11 01 1

1 0 11

A . Vérifier quePest inversible et calculerP1. Quelle relation lieA,B,P etP1? Soitfl"endomorphisme deR3dont la matrice par rapport à la base canonique(e1;e2;e3)est A=0 @1511 5

2015 8

87 61
A

Montrer que les vecteurs

e forment une base deR3et calculer la matrice defpar rapport à cette base.

SoitA=0

B

BBBBB@0:::0 1

... 1 0 0 1

1 0:::01

C CCCCCA. En utilisant l"application linéaire associée deL(Rn;Rn), calculerAppour p2Z. 1

SoientA;Bdeux matrices semblables (i.e. il existePinversible telle queB=P1AP). Montrer que si l"une est

inversible, l"autre aussi; que si l"une est idempotente, l"autre aussi; que si l"une est nilpotente, l"autre aussi;

que siA=lI, alorsA=B.

Soitfl"endomorphisme deR2de matriceA=223

52
23
dans la base canonique. Soiente1=2 3 et e 2=2 5 1. Montrer que B0= (e1;e2)est une base deR2et déterminer MatB0(f). 2.

Calculer Anpourn2N.

3. Déterminer l"ensemble des suites réelles qui vérifient 8n2N8 :x n+1=2xn+23 yn y n+1=52 xn23 yn.

Soitaetbdeux réels etAla matrice

A=0 @a21b

3 0 14

5 41 21

A Montrer que rg(A)>2. Pour quelles valeurs deaetba-t-on rg(A) =2 ?

SoientA=0

B

B@1 2 1

3 4 1 5 6 1

7 8 11

C

CA;B=0

B

B@2 21 7

4 31 11

01 24

3 32 111

C CA. Calculer rg(A)et rg(B). Déterminer une base du noyau et une base de l"image pour chacune des applications linéaires associéesfAetfB. SoitEun espace vectoriel etfune application linéaire deEdans lui-même telle quef2=f. 1.

Montrer que E=KerfImf.

2. Supposons que Esoit de dimension finien. Posonsr=dimImf. Montrer qu"il existe une baseB= (e1;:::;en)deEtelle que :f(ei) =eisii6retf(ei) =0 sii>r. Déterminer la matrice defdans cette baseB. Trouver toutes les matrices deM3(R)qui vérifient 2

1.M2=0 ;

2.M2=M;

3.M2=I.

Soitfl"application deRn[X]dansR[X]définie en posant pour toutP(X)2Rn[X]:f(P(X)) =P(X+1)+

P(X1)2P(X):

1. Montrer que fest linéaire et que son image est incluse dansRn[X]. 2. Dans le cas où n=3, donner la matrice defdans la base 1;X;X2;X3. Déterminer ensuite, pour une valeur denquelconque, la matrice defdans la base 1;X;:::;Xn. 3. Déterminer le no yauet l"image de f. Calculer leur dimension respective. 4. Soit Qun élément de l"image def. Montrer qu"il existe un uniqueP2Rn[X]tel que :f(P) =Qet

P(0) =P0(0) =0.

Pour toute matrice carréeAde dimensionn, on appelle trace deA, et l"on note trA, la somme des éléments

diagonaux deA: trA=nå i=1a i;i 1. Montrer que si A;Bsont deux matrices carrées d"ordren, alors tr(AB) =tr(BA). 2. Montrer que si fest un endomorphisme d"un espace vectorielEde dimensionn,Msa matrice par rapport

à une basee,M0sa matrice par rapport à une basee0, alors trM=trM0. On note trfla valeur commune

de ces quantités. 3. Montrer que si gest un autre endomorphisme deE, tr(fggf) =0. Indication pourl"exer cice1 Nfest l"application qui àx y associexy 0 .Indication pourl"exer cice5 NAestidempotentes"il existe unntel queAn=I(la matrice identité).

Aestnilpotentes"il existe unntel queAn= (0)(la matrice nulle).Indication pourl"exer cice10 NIl faut trouver les propriétés de l"application linéairefassociée à chacune de ces matrices. Les résultats

s"expriment en explicitant une (ou plusieurs) matriceM0qui est la matrice defdans une base bien choisie

et ensuite en montrant que toutes les autres matrices sont de la formeM=P1M0P.

Plus en détails pour chacun des cas :

1. Im fKerfet discuter suivant la dimension du noyau. 2.

Utiliser l"e xercice

9 : K erfImfet il existe une base telle quef(ei) =0 ouf(ei) =ei. 3.

Poser N=I+M2

(et doncM=) chercher à quelle conditionM2=I.4

Correction del"exer cice1 NL"expression defdans la baseBest la suivantef(x;y)=(xy;0). Autrement dit à un vecteurx

y on associe le vecteur xy 0 . On note quefest bien une application linéaire. Cette expression nous permet de calculer les matrices demandées.

Remarque : commeBest la base canonique on notex

y pourx y B qui est le vecteurx~i+y~j. 1. Calcul de Mat (f;B;B). CommeB= (~i;~j), la matrice s"obtient en calculantf(~i)etf(~j): f(~i) =f1 0 =1 0 ~i f(~j) =f0 1 =1 0 =~i donc

Mat(f;B;B) =11

0 0 2.

On g ardela même application linéaire mais la base de départ change (la base d"arri véereste B). Si on

note~u=~i~jet~v=2~i+3~j, on aB0= (~i~j;2~i+3~j) = (~u;~v). On exprimef(~u)etf(~v)dans la base d"arrivéeB. f(~u) =f(~i~j) =f1 1 =2 0 f(~v) =f(2~i+3~j) =f2 3 =5 0 donc

Mat(f;B0;B) =25

0 0 3.

T oujoursa vecle même fon prendB0comme base de départ et d"arrivée, il s"agit donc d"exprimerf(~u)

etf(~v)dans la baseB0= (~u;~v). Nous venons de calculer que f(~u) =f(~i~j) =f1 1 =2 0 =2~i f(~v) =f(2~i+3~j) =f2 3 =5 0 =5~i Mais il nous faut obtenir une expression en fonction de la baseB0. Remarquons que ~u=~i~j ~v=2~i+3~j=)~i=3~u+~v ~j=2~u+~v Donc f(~u) =f(~i~j) =2~i=6~u+2~v=6 2 B

0f(~v) =f(2~i+3~j) =5~i=15~u5~v=15

5 B 0 Donc

Mat(f;B0;B0) =615

25

Remarque :

x y B

0désigne le vecteurx~u+y~v.Correction del"exer cice2 N5

1.On note la base B=(e1;e2;e3)etX=0

@x y z1 A

B=xe1+ye2+ze3. La matriceA=MatB(f)est composée

des vecteurs colonnesf(ei), on sait f(e1) =e3=0 @0 0 11 A

Bf(e2) =e1+e2+e3=0

@1 1 11 A

Bf(e3) =e3=0

@0 0 11 A B doncA=0 @01 0 0 1 0

1 1 11

A

Le noyau def(ou celui deA) est l"ensemble deX=0

@x y z1 A tel queAX=0.

AX=0()0

@01 0 0 1 0

1 1 11

A 0 @x y z1 A =0 @0 0 01 A ()8 :y=0 y=0 x+y+z=0quotesdbs_dbs49.pdfusesText_49
[PDF] application piano numérique

[PDF] application sportcash pour android

[PDF] application working holiday visa australia

[PDF] application zimbra mail

[PDF] applications linéaires exercices corrigés

[PDF] bareme note saut en longueur

[PDF] apport de la civilisation greco-romaine ? l'humanité

[PDF] apport du controle de gestion dans la performance de l'entreprise

[PDF] apposition mention de divorce sur acte de naissance

[PDF] appréciation bulletin maternelle

[PDF] appréciation bulletin prof principal

[PDF] appréciation bulletin scolaire collège

[PDF] appréciation bulletin scolaire cp

[PDF] appréciation bulletin scolaire lycée

[PDF] appréciation bulletin scolaire maternelle