[PDF] Décomposition en série de Fourier Signaux périodiques





Previous PDF Next PDF



Chapitre 4 Nombres complexes et exponentielle complexe

4.2 Argument et forme polaire d'un nombre complexe . . . . . . . . . . . . . . . . . . 82. 4.3 Exponentielle complexe . Limite de la somme : (a) Si lim.



TF DIRAC

ET TUTTI QUANTI



Séries entières

La somme est la fonction qui à tout complexe z tel que ? an zn converge associe Le fait que la somme de la série exponentielle soit exp(z) n'est.



Calcul Algébrique

se lit « somme pour k allant de zéro à cinq de deux puissance k ». C'est une notation écriture prend toute sa force grâce à l'exponentielle complexe.



Lexponentielle complexe

L'exponentielle complexe du cercle U des nombres complexes de module 1. ... convergente sur tout compact K ? C. Sa somme est notée exp(z) ou.



Décomposition en série de Fourier Signaux périodiques

forme d'une somme de signaux sinusoïdaux. Cette somme peut s'écrire de deux manières : – forme trigonométrique réelle. – forme exponentielle complexe 



Séries numériques

29 avr. 2014 La somme de la série exponentielle est le nombre e ... Pour les séries à termes complexes la convergence équivaut à celle des parties ...



Exponentielle de matrices

4.1 Groupes topologiques et exponentielle complexe . de la matrice unipotente In + D?1N qui est une somme finie



Compléments sur les complexes

Cette expression est la forme exponentielle du complexe z. 1. on écrit la quantité étudiée comme la partie réelle (ou imaginaire) d'une somme d'ex-.



Transformation de Fourier et majoration de sommes exponentielles

variété complexe Xç munie de l'application fç : Xç -> Aç et qui est à l'interprétation cohomologique des sommes exponentielles et au théorème de chan-.



[PDF] Chapitre 4 Nombres complexes et exponentielle complexe

On écrit ainsi les nombres complexes sous la forme a`bi ou a`ib L'addition et la multiplication sont alors données par les formules : (a') pa ` ibq`pc ` idq“pa 



[PDF] Lexponentielle complexe

La propriété fondamentale de l'exponentielle est la suivante : Théorème 1 2 Pour tous nombres complexes s t on a eset = es+t En particulier l'exponentielle 



[PDF] C3 : Nombres complexes : formes exponentielles et trigonométriques

Tout nombre complexe de module non nul r et d'argument ? s'écrit z = rei? Cette écriture est la forme exponentielle de z Exercice 12 On donne z1 =1+ i et 



[PDF] Nombres complexes

On appelle fonction exponentielle complexe la fonction : C ? C z ?? ez Les r`egles de calcul pour les fonctions exponentielles réelle et imaginaire pure s 



[PDF] Compléments sur les complexes - CPGE Brizeux

Les propriétés calculatoires de exp découlant de sa propriété fonctionnelle l'exponentielle complexe possède les mêmes : Proposition



[PDF] Forme exponentielle dun nombre complexe

fonction exponentielle à l'aide d'une somme infinie de termes valable dans R et dans C mais qu'on ne voit qu'après le bac ! Forme exponentielle d'un 



[PDF] Pascal Lainé 1 NOMBRES COMPLEXES Exercice 1

Effectuer les calculs suivants en utilisant la forme exponentielle 1 = 1 + 1 ? Calculer la somme des complexes qui vérifient = ?1



[PDF] NOMBRES COMPLEXES

On appelle corps des nombres complexes et on note CI un ensemble contenant IR Écrire sous la forme exponentielle ou sous la forme trigonométrique les 



[PDF] sommes exponentielles Nicholas M KATZ - Princeton Math

Il s'agit d'un cours consacré aux sommes exponentielles provenant continue sur X à valeurs complexes) on a lim !( ~ f(x)) = S f N-++>O N n=l



[PDF] 1 Généralités 2 Écriture exponentielle

Groupe des nombres complexes de module 1 noté U On pose ei? = cos? + somme) C'est utile par exemple pour calculer des intégrales ou des dérivées

:

TdS H. Garnier 1

Hugues GARNIER

hugues.garnier@univ-lorraine.fr Décomposition en série de Fourier Signaux périodiques

TdS H. Garnier 2

Organisation de l'UE de TdS

I. Introduction

II. Analyse et traitement de signaux déterministes - Analyse de Fourier de signaux analogiques

• Signaux à temps continu • Décomposition en série de Fourier • Transformée de Fourier à temps continu

- De l'analogique au numérique - Analyse de Fourier de signaux numériques III. Filtrage des signaux IV. Analyse et traitement de signaux aléatoires

TdS H. Garnier 3

Introduction

• Domaine, jusqu'à présent, habituel pour analyser un signal : - Domaine temporel : analyse de l'évolution du signal dans le temps

• Permet de mettre en évidence certaines caractéristiques :

• signal périodique ou non (détermination de la période), • amplitude (valeur moyenne, maximale...), • signal analogique/numérique, énergie finie/infinie, ...

• Déterminer l'expression analytique du signal ci-dessous ?

5 s(t) t (ms) 5 0

s(t)=?

TdS H. Garnier 4

Introduction

• L'expression mathématique du signal est : - L'observation dans le domaine temporel est s ouvent insuffisante pour déduire l'expression mathématique du signal - Il serait int éressant de tro uver une autre représentation qui app orterait plus d'informations sur le signal que la représentation usuelle temporelle - Cette nouvelle représentation devra faire directement apparaître certaines caractéristiques du signal (par exemple A o , A 1 , A 2 o 1 2

) non plus dans le do maine temporel (en fonct ion du temps) mais dans le do maine fréquentiel, c'est à dire en fonction de la fréquence.

5 s(t) t (ms) 5 0

TdS H. Garnier 5

• Représentation habituelle : amplitude du signal en fonction du temps • Nouvelle représentation : amplitude et phase initiale en fonction de la fréquence

5 s(t) t (ms) 5 0f (Hz) 0

A o =2 A 1 =5 A 2 =10 A n

1000 2500 f (Hz) 0

o =0 ϕ n

1000 2500

3 1 2 2

TdS H. Garnier 6

Série & transformée de Fourier

Joseph FOURIER

• Auxerre 1768 - Paris 1830 • Grand savant français • A pr ofondément influencé les mathématiques et la physique des sciences de son siècle • L'étude de la propagation de la chaleur l'a amené à la découverte des séries trigonométriques portant son nom

TdS H. Garnier 7

Théorème de Fourier Sous certaines conditions de dérivation et de continuité, tout signal à temps continu s(t) périodique de période T

o peut s'écrire sous la forme d'une somme de signaux sinusoïdaux Cette somme peut s'écrire de deux manières : - forme trigonométrique réelle - forme exponentielle complexe

TdS H. Garnier 8

Forme trigonométrique réelle

avec : Tout signal à temps continu s(t) périodique de période T o peut s'écrire :

Le terme g énéral u

n (t)=a n cos(nω o t)+b n sin(nω o t)=A n cos(nω o t-ϕ n ) est appelé harmonique de rang n C'est un signal cosinusoïdal d'amplitude A n de période T o /n (fréquence nf o ) et de phase à l 'origine -ϕ n

TdS H. Garnier 9

Remarques et propriétés

- a 0 : valeur moyenne du signal (composante continue) - Harmonique d'ordre 1 : fondamental - Amplitudes A n tendent vers 0 lorsque n tend vers l'infini - Décomposition indépendante de l'intervalle [t 0 , t 0 +T o - Si s(t) pair - Si s(t) impair

TdS H. Garnier 10

Spectres unilatéraux d'amplitude et de phase

• Spectre d'amplitude de s(t) : tracé de A n en fonction des pulsations (fréquences) • Spectre de phase de s(t) : tracé de ϕ n

en fonction des pulsations (fréquences) • On parle de représentation fréquentielle ou spectrale • A

n et ϕ n n'existant que pour des multiples entiers de ω o on parle de spectres de raies. composante continue 0 ω o

2 ω

o

3 ω

o

4 ω

o A 1 A 0 A 2 A 3 A 4 A 5

5 ω

o A n fondamental ω (rd/s)

Spectre unilatéral de phase

0 n o

2 ω

o

3 ω

o

4 ω

o 1 0 2 3 4 5

5 ω

o

ω (rd/s)

Spectre unilatéral d

'amplitude 0 T o s(t) t

Evolution temporelle du signal

TdS H. Garnier 11

Exemple 1 : cas d'un signal sinusoïdal

• Soit un signal sinusoïdal décrit par : C 'est un signal ne contenant qu'un seul harmonique ! s(t)=2cos(2π10t-π4)

Domaine temporel

s(t) t 2

0.1125 0 0.0125 T

o =0.1s A 1 A 2 A 3 A 4 A 5 0 10 20

304050

A n fondamental f (Hz) 2

Domaine fréquentiel

Spectre unilatéral de phase Spectre unilatéral d 'amplitude 1 2 3 4 5

0 10 20 30 40 50 ϕ

n f ( Hz )

4 π

TdS H. Garnier 12

Exemple 2 : cas d'un créneau

• Montrer que le dévelop pement en s érie de Fourier d'un signal créneau s'écrit : s(t) t A T o 0

Domaine temporel

A n 4A 3 4A 3ω 5ω 3ω 5ω n 2

Domaine fréquentiel

Spectre unilatéral de phase Spectre unilatéral d 'amplitude

TdS H. Garnier 13

Evolution temporelle des harmoniques Reconstruction du signal à partir des harmoniques

0 -2 0 2 0 0 0 0 0 1 -5 0 5 0 1 -5 0 5 0 1 -5 0 5 0 1 -5 0 5 0 1 -5 0 5 -2 0 2 -2 0 2 -2 0 2 -2 0 2 1 1 1 1 1

Harmonique 1 Harmoniques 1 et 3 Harmoniques 1, 3 et 5 Harmoniques 1, 3, 5 et 7 Harmoniques 1, 3, 5 7 et 9 Harmonique 1 Harmonique 5 Harmonique 3 Harmonique 7 Harmonique 9

Ondulations = phénomène de Gibbs

A=2 T o =1

TdS H. Garnier 14

Théorème de Fourier

Sous certaines conditions de dérivation et de continuité, tout signal à temps continu s(t) périodique de période T o peut s'écrire sous la forme d'une somme de signaux sinusoïdaux. Cette somme peut s'écrire de deux manières : - forme trigonométrique réelle - forme exponentielle complexe

TdS H. Garnier 15

De la forme trigonométrique à la forme exponentielle complexe • Tout signal à temps continu s(t) périodique de période T o peut s'écrire :

En utilisant les formules d'Euler :

• On montre que tout signal à temps continu s(t) périodique de période T o peut également s'écrire :

Forme trigonométrique

réelle

Forme exponentielle

complexe

TdS H. Garnier 16

Forme exponentielle complexe

• Tout signal à temps continu s(t) périodique de période T o peut s'écrire : • Remarques - Les coefficients c n

sont appelés coefficients de Fourier - Ces coefficients sont généralement complexes et peuvent

s 'écrire sous forme exponentielle complexe : - L 'harmonique de rang n s'écrit également : L'harmonique de rang n est donc une cosinusoïde de pulsation nω o d'amplitude 2 |c n et de déphasage Arg(c n

TdS H. Garnier 17

Spectres bilatéraux d'amplitude et de phase

• Les coefficients de Fourier sont généralement complexes et peuvent s 'écrire : • Spectre d 'amplitude de s(t) : tracé de |c n | en fonction des pulsations • Spectre de phase de s(t) : tracé de Arg(c n ) en fonction des pulsations

Spectre bilatéral de phase

0

Spectre bilatéral d

'amplitude 0 T o s(t) t

Evolution temporelle du signal

cn=cnejArg(cn)Ic n I 0 o 2ω o 3ω o Ic 1 I c 0 Ic 2 I Ic 3 I fondamental

ω (rd/s)

Ic -1 I Ic -2 I Ic -3 I o -2ω o -3ω o Arg(c n 0 o 2ω o 3ω o

ω (rd/s)

o -2ω o -3ω o

TdS H. Garnier 18

Propriétés des spectres bilatéraux

• Il apparaît dans l'expression de s(t) des termes pour les fréquences s'étendant de - ∞ à +∞, d'où le nom de spectres bilatéraux

• Le spectre d'amplitude bilatéral est toujours pair • Le spectre de phase bilatéral est toujours impair • Les 2 spectres ne comportent des composantes qu'aux multiples

entiers de la fréquence du signal, on parle de spectres de raies Spectre bilatéral de phase Spectre bilatéral d'amplitude Ic n I 0 o 2ω o 3ω o Ic 1 I c 0 Ic 2 I Ic 3 I fondamental

ω (rd/s)

Ic -1 I Ic -2 I Ic -3 I o -2ω o -3ω o Arg(c n 0 o 2ω o 3ω o

ω (rd/s)

o -2ω o -3ω o

TdS H. Garnier 19

Exemple 1 : cas d'un signal sinusoïdal

• Soit un signal sinusoïdal décrit par : s(t)=2cos(2π10t-π4)

Domaine temporel

Domaine fréquentiel

Spectre bilatéral de phase Spectre bilatéral d 'amplitude

0 10 20 30 f ( Hz) 1 -20 -10

n c 1 c 1 c c c 3 c 010 20 30
f (Hz) -20-10 )c(Arg n 4 4 s(t) t 2

0.1125 0 0.0125 T

o =0.1s

TdS H. Garnier 20

Exemple 2 : cas d'un créneau

• Montrer que les coefficients de Fourier sont donnés par : s(t) t A T o 0

Domaine temporel Domaine fréquentiel

Spectre bilatéral de phase Spectre bilatéral d 'amplitude 2A 3quotesdbs_dbs44.pdfusesText_44
[PDF] primitive exponentielle complexe

[PDF] exponentielle i pi

[PDF] métaheuristique cours pdf

[PDF] module de exp(ix)

[PDF] méthodes métaheuristiques

[PDF] algorithme heuristique pdf

[PDF] généralités sur les systèmes automatisés de production

[PDF] structure fonctionnelle d'un système automatisé

[PDF] méthodes heuristiques d'optimisation

[PDF] définition d'un système automatisé de production

[PDF] méthodes heuristiques et métaheuristique d'optimisation

[PDF] méthode heuristique optimisation

[PDF] système automatisé de production sap

[PDF] les métaheuristiques en optimisation combinatoire

[PDF] système automatisé de production pdf