[PDF] [PDF] 22 Quelques propriétés des intégrales définies





Previous PDF Next PDF



Chapitre3 : Propriétés de lintégrale sur un segment dune fonction

La démonstration est immédiate en utilisant la linéarité et la positivité. II Majorations minorations d'intégrales. Théorème : Soit f continue par morceaux sur 



2.2 Quelques propriétés des intégrales définies

et est notée ? f(x)dx (noter l'absence de bornes). Remarque 2.15. (conséquence de la linéarité de la dérivation). 1. Pour deux fonctions f g: [a



Chapitre 7 : Intégrales généralisées

La linéarité de l'intégrale et de la limite permettent de généraliser les propriétés élémen- taires des intégrales aux intégrales impropres.



Primitives et intégrales

Primitives d'une fonction continue sur un intervalle ; définition et propriétés de l'intégrale inégalité de la moyenne. Applications.



INTÉGRATION

Propriété : f et g sont deux fonctions continues sur un intervalle I. Méthode : Calculer une intégrale en appliquant la linéarité.



La continuité en un point

Linéarité de l'intégrale indéfinie. Deux propriétés de l'intégrale. Anik Soulière. Professeure de mathématique. Département de mathématiques.



Intégrale de Riemann

Sep 1 2022 Propriétés des intégrales de fonctions en escalier. • (linéarité) L'application f ??. ? b a f(x)dx est une application linéaire de E([a



Théorie de lintégration de Lebesgue

L'intégrale des fonctions mesurables positives quelconques : f g: Rd ?? R+ ? {?} satisfait les six propriétés suivantes. (i) Linéarité positive : Pour tous 



Calcul intégral

a- Linéarité. Propriété : Soient f et g deux fonctions continues pas morceaux sur [ab] et ? ?? alors :.



Intégrale de Lebesgue

Sep 1 2022 4.2 Propriétés de l'intégrale . ... puis par linéarité de généraliser aux fonctions étagées et par convergence monotone aux.



[PDF] 22 Quelques propriétés des intégrales définies

24 fév 2010 · (Intégrale définie) On suppose que la fonction réelle f: [a b] R est intégrable sur [a b] Considérons alors une subdivision régulière a 



[PDF] Chapitre 1 : Intégrales définies

Intégrale fonction de sa borne supérieure Soit f : [a ; b] ?R continue On définit la fonction G sur [a ; b] par G(x) = f t dt a x ( ) z Propriété : G 



[PDF] Propriétés de lintégrale sur un segment dune fonction continue par

Ce qui ramène l'intégrale d'une fonction continue par morceaux sur un segment à une somme d'in- tégrales de fonctions continues sur des segments IV Positivité 



[PDF] INTÉGRATION - maths et tiques

Propriété : f et g sont deux fonctions continues sur un intervalle I Méthode : Calculer une intégrale en appliquant la linéarité



[PDF] Terminale S - Notion dintégrale Propriétés - Parfenoff org

Cette intégrale représente l'aire du trapèze ABCD ci-dessous : II) Propriétés des intégrales et en utilisant la linéarité de l'intégrale on a



[PDF] Chapitre 5 Intégration

Voici les principales propriétés de l'intégrale Proposition 5 1 3 Soient ? et ? deux fonctions en escaliers sur un intervalle I et soient a b ? I



[PDF] Chapitre 7 : Intégrales généralisées

La linéarité de l'intégrale et de la limite permettent de généraliser les propriétés élémen- taires des intégrales aux intégrales impropres



[PDF] CALCUL INTEGRAL ET SERIES

2 3 Propriétés de l'intégrale ram`ene donc par linéarité au calcul d'une primitive sur R d'une fonction f : R ? R définie par



[PDF] Deux propriétés de lintégrale - Linéarité de lin - Mathéma-TIC

Linéarité de l'intégrale indéfinie Deux propriétés de l'intégrale Anik Soulière Professeure de mathématique Département de mathématiques



[PDF] Intégrale de Riemann

Intégrale de Riemann Intégrabilité Exemples Propriétés Formule de la moyenne 3 Primitives Théorème fondamental de l'analyse Lien intégrale/primitive

:
Définition2.4.(Intégrabili téausensdeR iemann)Unefonc tionréellef:[a,b]Restdite intégrablesur[a,b],si ??>0,?f 1 ,f 2 :[a,b]Rfonctionsenescalierstell esque : 1.f 1 ?f?f 2 (i.e.?x?[a,b],f 1 (x)?f(x)?f 2 (x)) 2. a b f 2 (x)dx- a b f 1 (x)dx

Théorème2.5.(Intégrale définie)Onsu pposequelafonctionré ellef:[a,b]Restinté grablesur

0 Alorslasuite réelle determegénérale I n convergedansRets alimit e,notée a b f(x)dxestappel éeintégraledéfiniede fsur[a,b]. Danscecour snousn ousintéressero nsessentiell ementauxfonctionscontinueset auxfonctionsconti- nuesparmo rceaux,dé finiessurunintervallefermébo rné[a,b]deR. Définition2.6.Ondi tquelafon ctionf:[a,b]Restcont inueparmorceauxsifestborn éeet l'ensembledespointsdedisco ntinuité defestdeca rdinal fini. Nousadmettr onsetutiliseronssouventle théorè mesuivant: Théorème2.7.Soit[a,b]unin tervallefermébornédeR.Alorstoutefonctioncontinuef:[a,b]R estinté grablesur[a,b].

Note2.8.Dansl'exp ression

a b f(x)dx,aetbsontlesbo rnesd'intég ration,xestlav ariabl ed'inté-

gration;c'estunevariab lemuette.Ellepe utdoncêt reremplacéepartoute autrevaria ble,àl'exception

dece llesdesbornesd'int égratione tbiensûrdelavaria bleutiliséepournomméelafonc tion.Ainsi,si f:

[a,b]Restinté grablesur[a,b],onaleségalitéssuivantes: a b f(x)dx= a b f(t)dt= a b f(u)du= a b f(v)dv= a b f(y)dy.

2.2Que lquespropriétésdesintégral esdéfinies

Onsu pposedanslalistedespr opriétésci- dessou sque[a,b]estunin terval lefermébornédeR,fetg

sontdesfon ctions intégrablessur[a,b].

1.Qu andlesbornesd 'intégratio nsontconfondues:

a a f(x)dx=0

2.La relat iondeChasles:

?c?[a,b], a c f(x)dx+ c b f(x)dx= a b f(x)dx

3.Qu andonpermutele sbor nesd'intégration:

b a f(x)dx=- a b f(x)dx

4.La linéa rité:

i. a b (f+g)(x)dx= a b f(x)dx+ a b g(x)dx ii. ?λ?R, a b (λf)(x)dx=λ a b f(x)dx

5.Qu andlegraphed'u nedesf onctionsesttou joursaudessusdel' autre:

Sif?gsur[a,b],alors

a b f(x)dx? a b g(x)dx

2.2Quel quespropriétésdesintég ralesdéfinies11

6.Com paraisondelavaleurabsoluedel'i ntégra leetde l'intégraledelavaleura bsolue :

a b f(x)dx a b |f(x)|dx

2.3Pri mitives:calculd'intégralesdéfinies

Souvent,danslapratique,cal culerun eintég raledéfinieseramènerapournous,àch ercheruneprim itive

pourlafon ctionà intégrer. Définition2.9.Soitf:[a,b]Runefonc tionréelle.Onappellepri mitivedef,toutefonctiondéri- vableFdéfiniesur[a,b]etvér ifiantF =f.

Exemple2.10.

•Surl' intervalle[-2,3],lafonctionFdéfinieparF(x)=-cos(x)estunep rimitive delafonction fdéfiniesur[-2,3]parf(x)=sin(x). •SurR,lafonctionx- 1 2 x 2 estune primitive def:x-x;lafonctionx- 1 2 x 2 +7enes t uneaut re. Théorème2.11.Sil afoncti onf:[a,b]Radmetunepri mitiveF,alorslesprimitivesdefsont touteslesfoncti onsGdela formeG=F+λpourλparcourantR. Corollaire2.12.Soientf:[a,b]Runefonc tionréellesupposéeadmett reuneprimitiveF,x 0 ?[a,b] ety 0 0 enx 0 Exemple2.13.Soitf:[-2,2]Rdéfinieparf(x)=-x.fadmetuneuniqu eprimitiv eF,prenant lava leur3en1.PourdéterminerF,onécritquetouteprimitivedefestdel aforme F(x)=- 1 2 x 2

oùλestunec onstanter éelle.LaconditionF(1)=3fixelava leurde laconstanteλ.F(1)=3siet seule-

mentsiλ= 7 2 .Conclusion:F(x)= 1 2 (-x 2 +7). Note2.14. Uneprim itive(quellequ'ellesoit)de f:[a,b]Restauss iappeléeintégral eindéfiniedef etest notée f(x)dx(noterl'absence debornes). Remarque2.15.(conséque ncedelalinéari tédeladérivation)

1.Po urdeuxfoncti onsf,g:[a,b]R,siFetGsontdesprimi tivesr espectivesdefetg,alorsla

somme(F+G)estunep rimitived e(f+g).

2.Si festunep rimitived ef,alorspourtoutréelλ,(λF)estunep rimitive de(λf).

Théorème2.16.(théorème delamoyenne)Soitf:[a,b]Runefonc tionréellecontinuesur [a,b].Ilexisteunpointc?[a,b]telquef(c)= 1 b-a a b f(x)dx. (Lenom breréel 1 b-a a b f(x)dxestlamoy enne delafonctionfsurl'in tervalle[a,b]). Enut ilisantlethéorèmedelamoyen neonpe utprouverlethéorèmefonda mentalsuivant: Théorème2.17.Soitf:[a,b]Runefonc tionréellecontinuesur[a,b].Etantdonnéunpointx 0 x 0 x f(t)dtestunep rimitivede f.Cetteprimitive s'annuleenx 0 Danslaprat ique,c 'estlecorollairesuivantque l'onappliquep ourcalculer l'intégraledéfinied'une fonctiondontonconna îtuneprimitiv e. Théorème2.18.Soitf:[a,b]Runefonc tionréellecontinuesur[a,b].SiFestunep rimitived ef, alorsona a b f(x)dx=F(b)-F(a).

12Intégration:fonctionréelled'unevari ableréelle.

2.4Tech niquesd'intégration

Danscepara graphe ,ondécritlestechniquesdebaseàmaî triserpou rmeneràbienl ecalculd'unein té-

graledéfinie.

2.4.1Primiti vesdefonctionsusuelles

Lali stedeprimitives defonc tionsusuellesàconnaître: Primitivesdequelquesfonctionsusu ell es(λestunec onstanterée lle)

1)pou rα?R,α-1,ona

x dx= x

α+1

α+1

2) 1 x dx=ln|x|+λ

3)p ourα?R,α0,ona

e αx dx= 1 e αx

4)p ourunréelastrictementpositifetdifférentde1,

a x dx= a x ln(a) 5) sin(x)dx=-cos(x)+λ 6) cos(x)dx=sin(x)+λ

2.4.2Techni qued'intégrationparparties

Late chniqued'intégrationparpar tiesestfondéesurlaformulededér ivatio nd'unproduitdefonctions

dérivables: (u×v) =u

×v+u×v

Théorème2.19.Soientuetvdeuxfoncti onsréellescontinûmentdériv ables(i.e.desfonctionsdériva-

blesetdo ntlesd érivéessontc ontinues)s urunintervalleI.

Alorslafoncti onréel leproduitu

×vadmetuneprimi tivesurIeton a:

1. (u

×v)(x)dx=(u×v)(x)-

(u×v )(x)dx

2.si aetbsontdeuxpo intsdeI,

a b (u

×v)(x)dx=[(u×v)(x)]

a b a b (u×v )(x)dx (danscetteformu le,[(u×v)(x)] a b désigne(u(b)×v(b)-u(a)×v(a))

Exemple2.20.

1.Cal culeruneprimitivedel afonctionf:RRdéfinieparf(x)=xe

αx oùαestunno mbrer éel nonnul .

Solution:

a)O nposeu (x)=e αx etv(x)=x,cequidonneparexempleu(x)= 1 e αx enu tilisantlesfor- mulesdesprimi tivesdesf onctionsusuelles.Onav (x)=1. b)En utilis antlea)etlatechniqued'intég ratio nparpar ties,onob tient: xe αx dx= 1 xe αx 1× 1 e αx dx.

Onen dédui t

xe αx dx= 1quotesdbs_dbs44.pdfusesText_44
[PDF] propriété de proportionnalité

[PDF] changement d'heure maroc 2017

[PDF] changement heure maroc octobre 2017

[PDF] changement horaire maroc 2017

[PDF] heure d'été maroc 2017

[PDF] l'heure au maroc aujourd'hui

[PDF] changement heure maroc 2017

[PDF] résumé le salaire du sniper

[PDF] passages d'enfer

[PDF] questionnaire de lecture le salaire du sniper

[PDF] le salaire du sniper séquence

[PDF] le salaire du sniper audio

[PDF] nf e85-015

[PDF] hauteur moyenne d'un étage

[PDF] chute de hauteur définition