[PDF] [PDF] MATHÉMATIQUES DISCRÈTES





Previous PDF Next PDF



You may take one two or three math courses in General Social

WANT TO TAKE HIGH SCHOOL TS/SN MATH COURSES ONCE YOU ARE ENROLLED AT DAWSON? In their final years of high school a number of students either choose not to 



Math 412. The Symmetric Group Sn.

DEFINITION: The symmetric group Sn is the group of bijections from any set of n objects which we usu- ally call simply {1



Series

Definition 4.1. Let (an) be a sequence of real numbers. The series. ?. ? n=1 an converges to a sum S ? R if the sequence (Sn) of partial sums. Sn =.



TABLEAU DES PRÉALABLES

TS ou SN 4 e secondaire. TS ou SN 5 e secondaire Sciences humaines (profil avec math). Sciences humaines et langues cultures et mondes (sans math).



Representation Theory

one should recall that in first approximation



Math CST 5 ou Math TS ou SN 4 Préalables particuliers Math TS ou

Pilotage d'aéronefs. ?. Tech. de laboratoire. ?. (profil biotechnologies ou profil chimie analytique). ?. Tech. de génie chimique.



Recovering Functions Defined on $Bbb S^{n-1} $ by Integration on

Apr 2 2017 arXiv:1704.00349v1 [math.AP] 2 Apr 2017 ... For a point ? in Sn?1 define the following n ? 2 dimensional subsphere of Sn?1: Sn?2.



6. Conjugation in S One thing that is very easy to understand in

One thing that is very easy to understand in terms of Sn is conjuga- tion. Definition 6.1. Let g and h be two elements of a group G. The element ghg-1 is called 



CONJUGATION IN A GROUP 1. Introduction A reflection across one

In these examples different conjugacy classes in a group are disjoint: they don't overlap To carry ?1 to ?2 by conjugation in Sn





[PDF] Series SN Notation

SN is generally used to denote the sum to N terms of a series In the series 1 + 3 + 5+7+9+ S4 = 16 That is the sum of the 



Maths TS CST SN: faire le bon choix - ChallengeU

9 mar 2021 · Les maths Sciences Naturelles (SN) et Technico-Sciences (TS) sont ce qu'on appelle communément « les maths fortes » Attention! Bien qu'ils 



[PDF] Séries numériques

29 avr 2014 · Maths en Ligne Séries numériques UJF Grenoble Définition 2 On dit que la série ? un converge vers s si la suite des sommes partielles



[PDF] Cours danalyse 1 Licence 1er semestre

Définition 2 1 1 Une relation (ou proposition) est une phrase affirmative qui est vraie ou fausse (V ou F en abrégé) Une relation porte sur des objets 



[PDF] MATHÉMATIQUES DISCRÈTES

Définition I 1 (Sous-ensembles) L'ensemble A est un sous-ensemble de B si tous les éléments de A sont des éléments de 



Quel cours de mathématiques choisir en 4e et en 5e secondaire?

Par exemple si votre enfant choisit la séquence Sciences naturelles (SN) il poursuivra probablement dans cette voie en 4e et en 5e secondaire



Aide-mémoire – Mathématiques – Secondaire 5 – SN - Alloprof

offre un résumé du contenu étudié en mathématiques de la 5e secondaire séquence Sciences Naturelles (SN) Par définition ?x?=max{?xx}



[PDF] Structures Algébriques 1 : Résumé de cours

deF on peut effectuer la division euclidienne de a par g : La composition des applications munit Sn d'une structure de groupe : la composée de



[PDF] [PDF] Séries - Exo7 - Cours de mathématiques

Définitions – Série géométrique 1 1 Définitions Définition 1 Soit (uk)k?0 une suite de nombres réels (ou de nombres complexes) On pose Sn = u0 + u1 + 



[PDF] MATHS 110c cHAPITRE III : NOTIONS DE LIMITES

n'utiliserons la définition de la limite "avec des ?" que dans des exercices théoriques Dans les calculs pratiques de limite (voir la fin du paragraphe) nous 

SN is generally used to denote the sum to N terms of a series. In the series 1 + 3 +. 5+7+9+ , S4 = 16. That is, the sum of the 
  • C'est quoi les math SN ?

    Les maths Sciences Naturelles (SN) et Technico-Sciences (TS) sont ce qu'on appelle communément « les maths fortes ». Attention Bien qu'ils soient un peu différents, les deux cours répondent aux mêmes exigences et offrent les mêmes débouchés pour le Cégep et l'université.9 mar. 2021
  • Pourquoi faire math SN ?

    2- La séquence Sciences naturelles (SN)
    Cette séquence s'adresse tout particulièrement au jeune qui désire se diriger vers les sciences pures (ou naturelles) et la recherche. Si ce choix interpelle particulièrement votre enfant, il est important de vous assurer qu'il correspond bien à sa personnalité.
  • C'est quoi les mathématiques 436 ?

    On présente les mathématiques autrefois bien connues sous le nom de ?6» comme des mathématiques ?ortes». Voilà un problème de cadrage. Présenter les mathématiques comme «régulières» ou ?ortes» dans le langage pédagogique, c'est déjà porter ex ante une limite au jugement d'un adolescent incertain ou démotivé.
  • Mathématique 526 : transitoire : enseignement secondaire [Ministère de l'éducation], Direction de la formation générale des jeunes ; [coordination et conception, Mihran Djiknavorian ; conception et rédaction, Maurice Couillard, Denis de Champlain]

MATHÉMATIQUES DISCRÈTESMathieu SABLIK

Table des matières

I Introduction à la théorie des ensembles

5

I.1 Notions sur les ensembles

5 I.1.1 Construction par extension et compréhension 5

I.1.2 Principales règles de fonctionnement

5

I.1.3 Représentation

6

I.2 Sous-ensembles

6

I.2.1 Inclusion

6

I.2.2 Ensemble des parties

6

I.3 Opérations sur les ensembles

7

I.3.1 Union et Intersection

7

I.3.2 Différence et complémentaire

7

I.3.3 Produit cartésien

8

II Notions sur les langages

9

II.1 Exemples de problèmes

9

II.2 Mots sur un alphabet fini

9

II.2.1 Un peu de vocabulaire

9

II.2.2 Propriété d"équidivisibilité

10

II.3 Langage

11

II.3.1 Définition et exemples de langages

11

II.3.2 Opérations sur les langages

11

II.3.3 Equations sur les langages

11

III Fonctions et applications

13

III.1 Premières notions

13

III.1.1 Définition

13

III.1.2 Modes de représentation

14

III.1.3 Composition de fonction et d"applications

16

III.1.4 Applications singulières

17

III.2 Propriétés sur les fonctions

17

III.2.1 Injection et surjection

17

III.2.2 Bijection et application réciproque

17

III.3 Quelques classes importantes de fonctions

18

III.3.1 Fonction caractéristique d"un ensemble

18

III.3.2 Suites

19

IV Cardinalité21

IV.1 Cardinalité des ensembles finis

21

IV.1.1 Ensembles de même cardinalité

21

IV.1.2 Cardinal d"un ensemble fini

21

TABLE DES MATIÈRES2

IV.1.3 Principe des tiroirs

22

IV.2 Dénombrement

23
IV.2.1 Dénombrement et opération sur les ensembles 23

IV.2.2 Arrangements et combinaisons

26

IV.3 Cas des ensembles infinis

29
IV.3.1 Définition et premiers exemples d"ensembles dénombrables 29

IV.3.2 Critères de dénombrabilité

30

IV.3.3 Ensembles non dénombrables

31
31

V Relations sur les ensembles

33

V.1 Vocabulaire des relations

33

V.1.1 Définition

33

V.1.2 Modes de représentations

33

V.1.3 Quelques notions proches

34

V.2 Propriétés sur les relations

35

V.3 Relations d"équivalence

36

V.3.1 Définition et exemples

36

V.3.2 Classes d"équivalence et partition

37

V.3.3 Ensemble quotient

38

VI Relations d"ordre

39

VI.1 Premières notions

39

VI.1.1 Définition

39

VI.1.2 Exemples de relations d"ordre classiques

39

VI.1.3 Mode de représentation

40

VI.1.4 Fonctions croissantes et décroissantes

40

VI.2 Bornes d"un ensemble

41

VI.3 Induction

42

VI.3.1 Ordre bien fondé

42
VI.3.2 Application à l"étude de la terminaison d"algorithme 42
VI.3.3?et le principe de récurrence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

VI.3.4 Principe d"induction

45

VI.3.5 Définition inductive

45

VIIQuelques problèmes sur les graphes

49

VII.1Différents problèmes à modéliser

49

VII.2Premières propriétés

50

VII.2.1 Graphe orienté ou non

50

VII.2.2 Isomorphisme de graphe

51

VII.2.3 Degré

51

VII.3Quelques classes de graphe importantes

52

VII.3.1 Graphes isolés

52

VII.3.2 Graphes cycliques

52

VII.3.3 Graphes complets

52

VII.3.4 Graphe biparti

53

VII.3.5 Graphes planaires

53

VII.3.6 Arbres

53

VII.4Problèmes de coloriages

54

VII.4.1 Position du problème

54

VII.4.2 Exemples d"applications

54

VII.4.3 Nombre chromatique de graphes classiques

55

VII.4.4 Comment calculer un nombre chromatique?

55

VII.4.5 Résolution algorithmique

55

VII.4.6 Cas des graphes planaires

57

3Table des MatièresVII.5Problèmes de chemins dans un graphe. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

VII.5.1 Définitions

58

VII.5.2 Connexité

58

VII.5.3 Chemin Eulérien

59

VII.5.4 Chemins hamiltonien

61

TABLE DESMATIÈRES4

ChapitreIIntroduction à la théorie des ensembles I.1

Notions sur les ensembles

I.1.1

Construction par extension et compréhension

Intuitivement, unensembleest une collection d"objets deux à deux distincts appeléséléments.

On peut définir un ensemble de deux manières : en extension: on donne la liste exhaustive des éléments qui y figurent;

en compréhension: on donne les propriétés que doivent posséder les éléments de l"ensemble.

ExempleI.1.Voilà quelques exemples d"ensembles d"élèves : -fPierre; Paul; Marieg, on donne les trois éléments qui définissent l"ensemble; -félèves de la classe qui ont les yeux bleusg; -félèves qui viennent en cours en pyjamag, mais cet ensemble est certainement vide! ExempleI.2.Dans votre scolarité vous avez rencontré certains ensembles classiques de nombres : -?=f0,1,2,3,...gest l"ensemble des nombres naturels; -?=f1,2,3,...gest l"ensemble des nombres naturels non nul; -?=f...,3,2,1,0,1,2,3,...gest l"ensemble des nombres entiers; -?=fp/q:p2?etq2?avecq6=0g; -?l"ensemble des nombres réels; -?l"ensemble des nombres complexes. ExempleI.3.Les langages de programmation actuels exigent que certaines variables soient décla-

rées avec un certaintype de données. Un type de données est un ensemble d"objets associés à une

liste d"opérations standards effectuées sur ces objets. Définir le type d"une variable équivaut à

déclarer l"ensemble des valeurs possibles et autorisées pour cette variable. Dans la sémantique de Python vous avez dû rencontrer : le type bools"interprète comme l"ensemblefVrai,Fauxg, le type ints"interprète comme l"ensemble des entiers le type floats"interprète comme l"ensemble des nombres à virgule flottante le type strs"interprète comme l"ensemble des chaînes de caractères le type lists"interprète comme l"ensemble des listes de longueur variable. I.1.2

Principales règles de fonctionnement

On admettra l"existence d"ensembles. Sans rentrer dans l"axiomatique, la notion d"ensemble satisfait un certain nombre de règles de fonctionnement, en voici les principales : Relation d"appartenanceIl faut pouvoir dire si un objet est dans l"ensemble. On notex2Al"élé- mentxest dans l"ensembleA.

Chapitre I. INTRODUCTION À LA THÉORIE DES ENSEMBLES6Objets distinctsOn peut distinguer deux éléments entre eux et un ensemble ne peut pas contenir

deux fois le même objet.

Ensemble videIl existe un ensemble qui ne contient aucun élément, c"est l"ensemble vide et on le

noteAEoufg.

Paradoxe de RussellUn ensemble peut être élément d"un autre ensemble mais pas de lui même.

RemarqueI.1.Cette dernière règle peut ne pas sembler naturelle. A la naissance de la théorie des

ensembles, les mathématiciens ne voyaient pas d"objection à envisager un ensemble dont les élé-

ments seraient tous les ensembles : l"ensemble des ensembles. Russell leur opposa le paradoxe suivant : A=fx2E:x/2xg. CommeEcontient tous les ensembles,Aappartient àE. Est-ce queA appartient àA? si A2Aalors par définition deA, on aA/2A, si A/2Aalors par définition deA, on aA2A. I.1.3

Représentation

On peut représenter les ensembles à l"aide d"un diagramme de Venn, ce sont les fameux dia- grammes "patates". ExempleI.4.L"ensembefPierre; Paul; Marie; Julie; Karimgse représente par :KarimPierre

PaulMarieJulie

I.2

Sous-ensembles

I.2.1

Inclusion

Définition I.1(Sous-ensembles).L"ensembleAest unsous-ensembledeBsi tous les éléments deA sont des éléments deB(autrement ditx2A=)x2B). On dit aussi queAestinclusdansB, on le noteAB.

RemarqueI.2.Pour tout ensembleAon aAEAetAA.

ExempleI.5.On af1,2g f1,2,3g.

Bien sûr on a?????.

Définition I.2(Egalité d"ensembles).Deux ensembles sontégauxsi et seulement si ils ont les mêmes éléments, autrement dit siABetBA. I.2.2

Ensemble des parties

Définition I.3(Ensemble des parties).SoitAun ensemble, l"ensemble des parties de A, notéP(A), est l"ensemble des sous-ensembles deA. On remarque que l"on a toujoursAE2 P(A)carAEAetA2 P(A)carAA. ExempleI.6.SiA=f1,2,3galorsP(A) =fAE,f1g,f2g,f3g,f1,2g,f1,3g,f2,3g,f1,2,3gg.

7I.3. Opérations sur les ensembles

RemarqueI.3.On aP(AE) =fAEgetP(P(AE)) =fAE,fAEgg. La notationAEdécrit un ensemble qui ne

contient rien alors quefAEgdécrit un ensemble contenant un élément, l"ensemble vide. Un tiroir

contenant un sac vide (fAEg) n"est pas vide et contient bien un objet. I.3

Opérations sur les ensembles

On présente ici des opérations sur les ensembles qui permettent de construire de nouveaux ensembles. I.3.1

Union et Intersection

deAou deB. On le noteA[B. Proposition I.1 Propriétés de la réunionLa réunion admet certaines propriétés :

Idempotence :A[A=A

Commutativité :A[B=B[A

Associativité :A[(B[C) = (A[B)[C

Elément neutre :A[AE=ADéfinition I.5(Intersection).L"intersectiondes ensemblesAetBest l"ensemble des éléments com-

muns àAet àB. On le noteA\B. On dit que deux ensembles sontdisjoints(ouincompatibles) siA\B=AE. Proposition I.2 Propriétés de l"intersectionL"intersection admet certaines propriétés :

Idempotence :A\A=A

Commutativité :A\B=B\A

Associativité :A\(B\C) = (A\B)\C

Elément neutre :si l"on se place dans un ensembleWappelé univers et queAest un sous- ensemble deWalorsA\W=AProposition I.3 Propriétés de distributivité On a les distributivités suivantes entre l"union et l"intersection : de[sur\:A[(B\C) = (A[B)\(A[C) de\sur[:A\(B[C) = (A\B)[(A\C)I.3.2Dif férenceet complémentaire

Définition I.6(Différence).Ladifférencede l"ensembleApar l"ensembleBest l"ensemble des élé-

ments qui sont dansAmais pas dansB, on le noteArB.

Définition I.7(Différence symétrique).Ladifférence symétriqueentre les ensemblesAetBest l"en-

semble des éléments qui sont dansAouBmais pas dans les deux, on le note

ADB= (A[B)r(A\B).

Définition I.8(Complémentaire).On se fixe un ensembleWappeléunivers. PourAW, on définit lecomplémentairedeApar rapport àWcomme l"ensemble des éléments deWqui ne sont pas éléments deA, on le noteA=WrAlorsqu"il n"y a pas d"ambiguïtés.

Chapitre I. INTRODUCTION À LA THÉORIE DES ENSEMBLES8RemarqueI.4.Il faut obligatoirement se placer dans un ensemble de référence pour définir la com-

plémentation.

Proposition I.4 Propriétés de la complémentationLa complémentation a plusieurs propriétés :

Involution :A=A

Loi de Morgan :A\B=A[BetA[B=A\B

AB W Union IntersectionDifférenceDifférence symétrique

Passage au complémentaireA[BA\BArBADBA[BA\BArBADBFIGUREI.1 - Exemples de constructions d"ensembles à partir des ensemblesAetBcontenus dans

l"universW I.3.3

Produit cartésien

Définition I.9(Produit cartésien).Leproduit cartésiendes ensemblesAetB(dans cet ordre) est l"ensemble descouples(a,b)oùa2Aetb2B, on le noteAB. Leproduit cartésiendes ensemblesA1,A2,...,Ak(dans cet ordre) est l"ensemble desk-uplets (a1,...,ak)oùai2Aipour touti2 f1,...,kg, on le noteA1 Ak. SiA1==Akon noteAkl"ensemble desk-uplets formés par les éléments deA.

RemarqueI.5.Le couple(a,b)n"est pas un ensemble.

Sia6=balors(a,b)est distinct de(b,a).

ExempleI.7.Le système de codage informatique des couleurs RGB, (de l"anglais "Red, Green,

Blue") reconstitue une couleur par synthèse additive à partir de trois couleurs primaires (rouge,

quotesdbs_dbs15.pdfusesText_21
[PDF] math forte secondaire 5

[PDF] cours l'air qui nous entoure

[PDF] controle chimie 4ème l'air qui nous entoure

[PDF] quel est le pourcentage du rayonnement solaire qui traverse effectivement l'atmosphère terrestre

[PDF] l'air qui nous entoure 4ème

[PDF] comment appelle t on la couche dans laquelle nous vivons

[PDF] qu'est ce que l'atmosphère terrestre

[PDF] qu'est ce qui mesure la quantité de vapeur d'eau

[PDF] synthese d'un anesthesique la benzocaine correction

[PDF] synthèse du 4-nitrobenzoate d'éthyle

[PDF] synthèse de la benzocaine exercice seconde

[PDF] synthèse de la benzocaine sujet

[PDF] synthèse de la benzocaine terminale s

[PDF] cours de chimie therapeutique 3eme année pharmacie

[PDF] qcm chimie thérapeutique