[PDF] Recovering Functions Defined on $Bbb S^{n-1} $ by Integration on





Previous PDF Next PDF



You may take one two or three math courses in General Social

WANT TO TAKE HIGH SCHOOL TS/SN MATH COURSES ONCE YOU ARE ENROLLED AT DAWSON? In their final years of high school a number of students either choose not to 



Math 412. The Symmetric Group Sn.

DEFINITION: The symmetric group Sn is the group of bijections from any set of n objects which we usu- ally call simply {1



Series

Definition 4.1. Let (an) be a sequence of real numbers. The series. ?. ? n=1 an converges to a sum S ? R if the sequence (Sn) of partial sums. Sn =.



TABLEAU DES PRÉALABLES

TS ou SN 4 e secondaire. TS ou SN 5 e secondaire Sciences humaines (profil avec math). Sciences humaines et langues cultures et mondes (sans math).



Representation Theory

one should recall that in first approximation



Math CST 5 ou Math TS ou SN 4 Préalables particuliers Math TS ou

Pilotage d'aéronefs. ?. Tech. de laboratoire. ?. (profil biotechnologies ou profil chimie analytique). ?. Tech. de génie chimique.



Recovering Functions Defined on $Bbb S^{n-1} $ by Integration on

Apr 2 2017 arXiv:1704.00349v1 [math.AP] 2 Apr 2017 ... For a point ? in Sn?1 define the following n ? 2 dimensional subsphere of Sn?1: Sn?2.



6. Conjugation in S One thing that is very easy to understand in

One thing that is very easy to understand in terms of Sn is conjuga- tion. Definition 6.1. Let g and h be two elements of a group G. The element ghg-1 is called 



CONJUGATION IN A GROUP 1. Introduction A reflection across one

In these examples different conjugacy classes in a group are disjoint: they don't overlap To carry ?1 to ?2 by conjugation in Sn





[PDF] Series SN Notation

SN is generally used to denote the sum to N terms of a series In the series 1 + 3 + 5+7+9+ S4 = 16 That is the sum of the 



Maths TS CST SN: faire le bon choix - ChallengeU

9 mar 2021 · Les maths Sciences Naturelles (SN) et Technico-Sciences (TS) sont ce qu'on appelle communément « les maths fortes » Attention! Bien qu'ils 



[PDF] Séries numériques

29 avr 2014 · Maths en Ligne Séries numériques UJF Grenoble Définition 2 On dit que la série ? un converge vers s si la suite des sommes partielles



[PDF] Cours danalyse 1 Licence 1er semestre

Définition 2 1 1 Une relation (ou proposition) est une phrase affirmative qui est vraie ou fausse (V ou F en abrégé) Une relation porte sur des objets 



[PDF] MATHÉMATIQUES DISCRÈTES

Définition I 1 (Sous-ensembles) L'ensemble A est un sous-ensemble de B si tous les éléments de A sont des éléments de 



Quel cours de mathématiques choisir en 4e et en 5e secondaire?

Par exemple si votre enfant choisit la séquence Sciences naturelles (SN) il poursuivra probablement dans cette voie en 4e et en 5e secondaire



Aide-mémoire – Mathématiques – Secondaire 5 – SN - Alloprof

offre un résumé du contenu étudié en mathématiques de la 5e secondaire séquence Sciences Naturelles (SN) Par définition ?x?=max{?xx}



[PDF] Structures Algébriques 1 : Résumé de cours

deF on peut effectuer la division euclidienne de a par g : La composition des applications munit Sn d'une structure de groupe : la composée de



[PDF] [PDF] Séries - Exo7 - Cours de mathématiques

Définitions – Série géométrique 1 1 Définitions Définition 1 Soit (uk)k?0 une suite de nombres réels (ou de nombres complexes) On pose Sn = u0 + u1 + 



[PDF] MATHS 110c cHAPITRE III : NOTIONS DE LIMITES

n'utiliserons la définition de la limite "avec des ?" que dans des exercices théoriques Dans les calculs pratiques de limite (voir la fin du paragraphe) nous 

SN is generally used to denote the sum to N terms of a series. In the series 1 + 3 +. 5+7+9+ , S4 = 16. That is, the sum of the 
  • C'est quoi les math SN ?

    Les maths Sciences Naturelles (SN) et Technico-Sciences (TS) sont ce qu'on appelle communément « les maths fortes ». Attention Bien qu'ils soient un peu différents, les deux cours répondent aux mêmes exigences et offrent les mêmes débouchés pour le Cégep et l'université.9 mar. 2021
  • Pourquoi faire math SN ?

    2- La séquence Sciences naturelles (SN)
    Cette séquence s'adresse tout particulièrement au jeune qui désire se diriger vers les sciences pures (ou naturelles) et la recherche. Si ce choix interpelle particulièrement votre enfant, il est important de vous assurer qu'il correspond bien à sa personnalité.
  • C'est quoi les mathématiques 436 ?

    On présente les mathématiques autrefois bien connues sous le nom de ?6» comme des mathématiques ?ortes». Voilà un problème de cadrage. Présenter les mathématiques comme «régulières» ou ?ortes» dans le langage pédagogique, c'est déjà porter ex ante une limite au jugement d'un adolescent incertain ou démotivé.
  • Mathématique 526 : transitoire : enseignement secondaire [Ministère de l'éducation], Direction de la formation générale des jeunes ; [coordination et conception, Mihran Djiknavorian ; conception et rédaction, Maurice Couillard, Denis de Champlain]
arXiv:1704.00349v1 [math.AP] 2 Apr 2017

Recovering Functions Defined onSn-1by

Integration on Subspheres Obtained from

Hyperplanes Tangent to a Spheroid

Yehonatan Salman

Weizmann Institute of Science

Email: salman.yehonatan@gmail.com

Abstract

The aim of this article is to introduce a method for recovering functions, de- fined on then-1 dimensional unit sphereSn-1, using their spherical transform, which integrates functions onn-2 dimensional subspheres, on a prescribed fam- ily of subspheres of integration. This family of subspheresis obtained as follows, we take a spheroid Σ insideSn-1which contains the points±enand then each subsphere of integration is obtained by the intersection ofa hyperplane, which is tangent to Σ, withSn-1. In particular, we obtain as a limiting case, by shrinking the spheroid into its main axis, a method for recovering functions in case where the subspheres of integration pass through a common point inSn-1.

1 Introduction and Motivation

Recovering a functionf, defined on a manifold Ω, by integratingfon a family Γ of submanifolds of Ω, in case when one can obtain a well-posed problem(i.e., when the dimension of the family Γ is equal to the dimension of Ω), is one of the main subjects of research in Integral Geometry. In many cases, a solution can be found by assuming some symmetric properties on the manifold Ω such as translation and rotation invariance. In case where Ω is a sphere then one can use its special geometry in order to reconstruct a functionfin case where the family Γ consists of subspheres of Ω, where by a subsphere we mean a nonempty intersection of Ω with a hyperplane. If we assume, without loss of generality, that Ω is the unit sphereSn-1, then the recovery problem for Ω was studied and solved in cases where the family Γ of subspheres of integration has a specific geometric flavor. Some notable examples are when Γ consists of great subspheres (i.e., intersections of hyperplanes which pass through the origin withSn-1) ([3, 5, 6, 7, 9, 11, 12, 13, 15]), of subspheres which pass through a common point which lies onSn-1([9, 13, 15]), of subspheres which are orthogonal to a subsphere ofSn-1([2, 8, 10, 16]) and when Γ consists of subspheres obtained 1 by intersections ofSn-1with hyperplanes which pass through a common point inside S n-1([13, 14, 15]). The main aim of this paper is to continue the research obtained in the above mentioned papers and obtain inversion procedures for families of subspheres ofSn-1 which have a specific geometry. In our case, each subsphere in thefamily Γ is obtained by the intersection ofSn-1with a hyperplane which is tangent to a fixed spheroid Σ insideSn-1containing the north and south poles±en. In particular, we will show how by shrinking Σ into its main axis one can obtain an inversion procedure for the case of the so called spherical slice transform (see [9, Chapter 3, page 108]) where the subspheres of integration pass through a common pointpwhich lies onSn-1(where in our casepwill be the south pole-en). It should be mentioned however that in this paper the solution for the above reconstruction problem is given asa series of functions rather than in a closed form. This is because the method used here includes, at some stage, an expansion into spherical harmonics. Expansion into spherical harmonics in our case can be used since the spheroid Σ has a rotational symmetry with respect to its main axis. Of course, if Σ is a general ellipsoid insideSn-1then one cannot use the method present here, the solution for this general problem is left for future research. Our paper is organized as follows, in Chapter 2 we give all the necessary mathe- matical background for the formulation of the main result Theorem2.1 and formulate the main result. In Chapter 3 we discuss the method behind the proof of Theorem

2.1 and show how the limiting case, where Σ shrinks into its main axis, yields an

inversion procedure for the spherical slice transform. In Chapter 4 we give the proof of Theorem 2.1. Chapter 5 is more technical and contains a characterization of the stereographic projections of the subspheres of integration andalso contains a proof of the factorization of the infinitesimal volume measure, of each subsphere of integration, under the stereographic projection.

2 Mathematical Background and the Main Result

Denote byRnthendimensional Euclidean space and by?,?the standard scalar product onRn. Denote byR+the ray [0,∞), bySn-1then-1 dimensional unit sphere ofRn, i.e.,Sn-1={x?Rn:|x|= 1}and byωn-1= 2πn/2/Γ(n/2) the volume ofSn-1. Denote byC(Sn-1) the set of continuous functions defined onSn-1and on

C(Sn-1) define the following inner product

?f1,f2?Sn-1=? S n-1f1(ψ) f2(ψ)dψ,f1,f2?C?Sn-1? wheredψis the standard infinitesimal volume measure onSn-1. For a pointψinSn-1define the followingn-2 dimensional subsphere ofSn-1: S n-2

ψ=?x?Sn-1:?x,ψ?= 0?.

For a fixed real numberλ >0 define the following spheroid inRn: λ={x?Rn:x2n+ (x21+...+x2n-1)cosh2λ= 1}.(2.1) 2 Define the following stereographic and inverse stereographic projections respectively,

Λ :Sn-1\ {en} →Rn-1,Λ(x) =?x1

1-xn,...,xn-11-xn?

-1:Rn-1→Sn-1\ {en},Λ(y) =?2y1

1 +|y|2,...,2yn-11 +|y|2,-1 +|y|21 +|y|2?

We define the "stereographic projection"f?of a functionfinC(Sn-1) by f ?:Rn-1→R,f?=f◦Λ-1.

We will also define the function

f ??(x) =(f◦Λ-1)(x) |x|n-2(1 +|x|2)n-2wherex?Rn-1\ {0}.(2.2) Denote byGthe isotropic group of rotations inSn-1which leave the unit vector e nfixed. That is

G={g?SO(n) :gen=en}.

Define the Gegenbauer polynomialsCλl=Cλl(t) of orderλ >-1

2and degreelby

the following orthogonality relations 1 -1Cλl(t)Cλk(t)(1-t2)λ-1

2dt=?0, l?=k,

2

2λ-1Γ2(λ+1

2)l! (l+λ)Γ(l+2λ),l=k, and forλ=-1

2defineC-1

2l(t) = cos(larccos(t)).

For every integerm≥0 define the following functionhm,λ:R+→Rby h m,λ(x)(2.3)

24-ntanh3-nλ?xCn-3

3m? x2+1-tanh2λ 2x? ((1 + tanhλ-x)(1 + tanhλ+x) (x-1 + tanhλ)(x+ 1-tanhλ))n-4

0, o.w

For a functionF, defined onR+, define the Mellin transformMFofFby (MF)(s) =? 0 ys-1F(y)dy,s?C where it should be noted that the above integral might not converge for everys?C. For the Mellin transform we have the following inversion and convolution formulas for two functionsF1andF2defined onR+(see [4], Chapter 8.2 and 8.3): M -1(F1)(r) =1

2πi?

?+i∞ ?-i∞r-sM(F1)(s)ds,(2.4) 3

M(F1? F2)(r) =M(F1)(r)M(F2)(1-r) (2.5)

where??(0,1) and where the convolutionF1? F2is defined by (F1? F2)(s) =? 0 F

1(ss?)F2(s?)ds?.

As we will show later, ifF1,F2?L1(R+) then formulas (2.4) and (2.5) are valid when

0 For a functionfinC(Sn-1) define its spherical transformSfto be the integral transform which integratesfonn-2 dimensional subspheres inSn-1. That is, (Sf)(S) =? S f(x)dSx wheredSxis the standard infinitesimal volume measure on the subsphereSof inte- gration. Our aim is to recover functions inC(Sn-1) using their spherical transform where each subsphere of integration is obtained by the intersection ofSn-1with a hy- perplane which is tangent to the spheroid Σ

λ. Let us denote this family of subspheres

by Υ λ. From Lemma 5.1 it follows that the family ofn-2 dimensional spheres Υ?λ, which is obtained by projecting each subsphere in Υ

λusing the stereographic projec-

tion Λ, can be parameterized as in (5.1). Thus, by taking the inversestereographic projection Λ -1we obtain the following parametrization for Υλ:

ψ?Sn-2,c>0?

{Λ-1(cψ+c(tanhλ)ω) :ω?Sn-2}?.(2.6) Thus, if we define the followingn-2 dimensional sphere inSn-1 S then our data consists of the family of integrals (Sf)(Sψ,c) =? S

ψ,cf(x)dSψ,c,ψ?Sn-2,c >0 (2.7)

wheredSψ,cis the standard measure on Sψ,c. We have the following result for the recovering of a functionfinC(Sn-1) from the family of integrals (2.7). Theorem 2.1.Letfbe a function inC(Sn-1)such thatf??as defined in (2.2) is inL1(Rn-1\ {0})and such that f m=0d m? l=1f m,l(r)Yml(ξ) is the spherical harmonic expansion off?=f◦Λ-1. Then, for eachm≥0and f m,l(r) =(1 +r2)n-2

2πi?

?+i∞ ?-i∞r-sM(Km,l)(s)M(hm,λ)(1-s)ds where K m,l(c) =1 (2ctanhλ)n-2ωn-3? S n-2(Sf)(Sψ,c)Yml(ψ)dψ, h m,λis defined as in (2.3) and?is any number in the interval(0,1). 4

3 The Method Behind the Proof of Theorem 2.1

and the Limiting Caseλ→ ∞ The idea behind the proof of Theorem 2.1 consists mainly of three steps. In the first step we use the stereographic projection in order to project our family λof subspheres inSn-1into a family of hyperspheres inRn-1. As Lemma 5.1 shows, the family Υ λis projection into a well defined family Υ?λof hyperspheres inRn-1.

More specifically, each sphere in Υ

λhas its radius proportional, with the factor tanλ, to the distance of its center from the origin. As Lemma 5.2 shows, the infinitesimal volume measure of each subsphere in Υ λis factored under the stereographic projection and thus we can make all of our analysis onRn-1with the family Υ?λof spheres of integration. In the second step we exploit the rotational invariance (with respect to the origin) of the family Υ λin order to reduce our problem to each term in the spherical har- monic expansion of the modified projectiong(x) =f?(x)/(1+|x|2)n-2of the function fin question to be recovered. For each such termgm,lwe obtain a convolution type equation relatinggm,lto its corresponding termKm,lin the expansion of the integral transform (2.7) into spherical harmonics. Using the inversion and convolution for- mulas for the Mellin transform one is able to express the termgm,lin terms ofKm,l. Since we can extract each such termgm,lwe can obviously recovergand thus we can also recoverf?. In the third and final step we just use the inverse stereographic projection onf? in order return to our original functionf. Observe that by Lemma 5.1 it follows that forλ→ ∞the projected family of spheres Υ

λhas the following parametrization

ψ?Sn-2,c>0?

{cψ+cω:ω?Sn-2}?.

That is, Υ

λconsists of the hyperspheres inRn-1passing through the origin. By taking the inverse stereographic projection it is an easy exercise to show that the cor- responding family Υ λof subspheres consists of all the subspheres which pass through the south pole-en. Hence, this limiting case yields an inversion procedure for the case where the subspheres of integration pass through a commonpoint which lies on S n-1. Observe that for this case the functionhm,λhas the simpler form h m,∞(x) =? 2quotesdbs_dbs20.pdfusesText_26
[PDF] math forte secondaire 5

[PDF] cours l'air qui nous entoure

[PDF] controle chimie 4ème l'air qui nous entoure

[PDF] quel est le pourcentage du rayonnement solaire qui traverse effectivement l'atmosphère terrestre

[PDF] l'air qui nous entoure 4ème

[PDF] comment appelle t on la couche dans laquelle nous vivons

[PDF] qu'est ce que l'atmosphère terrestre

[PDF] qu'est ce qui mesure la quantité de vapeur d'eau

[PDF] synthese d'un anesthesique la benzocaine correction

[PDF] synthèse du 4-nitrobenzoate d'éthyle

[PDF] synthèse de la benzocaine exercice seconde

[PDF] synthèse de la benzocaine sujet

[PDF] synthèse de la benzocaine terminale s

[PDF] cours de chimie therapeutique 3eme année pharmacie

[PDF] qcm chimie thérapeutique