[PDF] Arithmétique dans Z Exercice 4. Démontrer que





Previous PDF Next PDF



Exercices corrigés darithmétique dans N - AlloSchool Exercices corrigés darithmétique dans N - AlloSchool

3 – Déterminer la parité du nombre A. Soit n un nombre entier naturel. Exercices corrigés d'arithmétique dans N. Tronc commun science biof 



Tronc Commun Lensemble des entiers naturels - Notions sur l

Et par suite S est divisible par n . Corrigé de l'exercice 7. • Les nombres entiers naturels qui répondent à la question sont ceux dont la somme de.



Exercices corrigés darithmétique dans N Partie III

2420b = (2× 3 × 5 × 11)3 donc 2420b = (330)3. Le plus petit entier naturel q pour que qb soit un cube parfait est q = 2420. Tronc commun science biof.



Présentation PowerPoint

D'où a4 – 1 est un multiple de 16. Tronc commun science biof. Page 4. Exercices corrigés d'arithmétique dans N.



Présentation PowerPoint

Exercices d'arithmétique. 3 – Déterminer le plus petit dénominateur commun puis calculer la somme. Tronc commun science biof. On a PPCM(a b) = 23 × 32 × 5 et 



Exercices corrigés darithmétique

n = 9 q1 +1 et n = 12 q2 +1 ; d'où n−1 est un multiple commun à 9 et 12 inférieur à 40. Par conséquent : n−1 = 36



Notion darithmétique et lEnsemble des nombres entiers

Cours arithmétique avec Exercices avec solutions. PROF : ATMANI NAJIB. Tronc CS. I) L Dans les exercices n est un entier naturel. C'est en forgeant que l'on ...



Exercices maths tronc commun scientifique maroc pdf

Car le ministère indique à L'Etudiant le même jour que ce passage du document est "faux à ce jour



Statistique tronc commun pdf

ﻦ. و. ﻫ. ﺬ. ه . د. وﻟ. ﻲ. ﺧ. ﻴﺎ. ر . Statistiques exercices corrigés tronc commun pdf Arithmétique dans IN Math tc biof: Statistiques exercice corrigé pdf tronc 



Cours darithmétique

5 Corrigé des exercices. 75. 5.1 Exercices de « Premiers concepts Exercice : Déterminer les entiers naturels n tels que n divise 2n − 1.



Tronc Commun Lensemble des entiers naturels - Notions sur l

Tronc Commun. L'ensemble des entiers naturels - Notions sur l'arithmétique. Corrigé de l'exercice 1. 1. Soit n un entier naturel non nul.



Présentation PowerPoint

Tronc commun science biof. Page 2. Exercice 1 : Soient m et n deux nombres entiers naturels tel que m > n . Exercices corrigés d'arithmétique dans N.



Présentation PowerPoint

Exercices corrigés d'arithmétique dans N. Partie III. Tronc commun science biof. Page 2. Exercices d'arithmétique. Exercice 9 : Exercice 10 :.



Présentation PowerPoint

Tronc commun science biof. Page 2. Exercices corrigés d'arithmétique dans N. Soit a un entier naturel impair. Exercice 4 :.



Cours darithmétique

traiter les exercices proposées aux olympiades internationales de mathématiques. Soit d un diviseur commun de Fn et Fm. Supposons par exemple n<m.



Arithmétique dans Z

Exercice 4. Démontrer que le nombre 7n +1 est divisible par 8 si n est impair; dans le cas n pair donner le reste de sa division par 8. Indication ?.



LARITHMETIQUE

10 sept. 2019 Cours L'ARITHMETIQUE ... 1.3 Diviseur commun multiple commun de deux entiers ... Exercice 09: n et a et b des entiers naturels.



Notion darithmétique et lEnsemble des nombres entiers

Cours arithmétique avec Exercices avec solutions V) le plus grand commun diviseur ... d)(-3) n'est pas un nombre entier naturel on écrit 3-?.



Niveau Tronc Commun Science Chapitre Arithmétiques & Ensemble

Tronc Commun. Science. Chapitre Arithmétiques. & Ensemble. Matière. Mathématiques Thème Série d'exo N° 3. Exercice 1 : 1) Décomposer en facteurs premiers 



ALGORITHME SECONDE Exercice 5.1 Ecrire un algorithme qui

EXERCICES – ALGORITHME SECONDE. Exercice 5.1 corrigé - retour au cours ... Corrigés des Exercices. Exercice 5.1. Variable N en Entier. Debut. N ? 0.



Images

il existe un entier naturel k tel que : n = 2k + 1 donc n + 1 = 2k + 2 Donc n(n + 1) = (2k + 1)(2k + 2) donc A = 2 (2k + 1)(k + 1) on pose k = (2k + 1)(k + 1) donc k Donc A = 2k d’où Le produit de deux nombres entiers naturels consécutifs est pair

Arithmétique dans Z Exo7 Arithmétique dansZ1 Divisibilité, division euclidienne

Exercice 1Sachant que l"on a 96842=256375+842, déterminer, sans faire la division, le reste de la division du nombre

96842 par chacun des nombres 256 et 375.

Montrer que8n2N:

n(n+1)(n+2)(n+3)est divisible par 24; n(n+1)(n+2)(n+3)(n+4)est divisible par 120:

Montrer que sinest un entier naturel somme de deux carrés d"entiers alors le reste de la division euclidienne

denpar 4 n"est jamais égal à 3.

Démontrer que le nombre 7

n+1 est divisible par 8 sinest impair ; dans le casnpair, donner le reste de sa division par 8. Trouver le reste de la division par 13 du nombre 100 1000.
1. Montrer que le reste de la di visioneuclidienne par 8 du carré de tout nombre impair est 1. 2. Montrer de même que tout nombre pair vérifie x2=0(mod 8)oux2=4(mod 8): 3. Soient a;b;ctroisentiersimpairs. Déterminerlerestemodulo8dea2+b2+c2etceluide2(ab+bc+ca): 4. En déduire que ces deux nombres ne sont pas des carrés puis que ab+bc+canon plus.

2 pgcd, ppcm, algorithme d"Euclide

Exercice 7Calculer le pgcd des nombres suivants :

1.

126, 230.

2.

390, 720, 450.

3.

180, 606, 750.

Déterminer les couples d"entiers naturels de pgcd 18 et de somme 360. De même avec pgcd 18 et produit 6480.

Calculer par l"algorithme d"Euclide : pgcd(18480;9828). En déduire une écriture de 84 comme combinaison

linéaire de 18480 et 9828.

Notonsa=1 111 111 111 etb=123 456 789.

1. Calculer le quotient et le reste de la di visioneuclidienne de aparb. 2.

Calculer p=pgcd(a;b).

3. Déterminer deux entiers relatifs uetvtels queau+bv=p.

Résoudre dansZ: 1665x+1035y=45:

Exercice 12Combien 15! admet-il de diviseurs ?

Démontrer que, siaetbsont des entiers premiers entre eux, il en est de même des entiersa+betab.

Soienta;bdes entiers supérieurs ou égaux à 1. Montrer :

1.(2a1)j(2ab1);

2. 2 p1 premier)ppremier ; 2

3.pgcd (2a1;2b1) =2pgcd(a;b)1.

Soita2Ntel quean+1 soit premier, montrer que9k2N;n=2k:Que penser de la conjecture :8n2N;22n+1 est premier ?

Soitpun nombre premier.

1.

Montrer que 8i2N;0 C ipest divisible parp: 2.

Montrer par récurence que :

8ppremier;8a2N;on aapaest divisible parp:

1.

Montrer par récurrence que 8n2N;8k>1 on a :

2

2n+k1=

22n1
k1Õ i=0(22n+i+1): 2. On pose Fn=22n+1. Montrer que pourm6=n,FnetFmsont premiers entre eux. 3. En déduire qu"il y a une infinité de nombres premiers. SoitXl"ensemble des nombres premiers de la forme 4k+3 aveck2N. 1.

Montrer que Xest non vide.

2. Montrer que le produit de nombres de la forme 4 k+1 est encore de cette forme. 3. On suppose que Xest fini et on l"écrit alorsX=fp1;:::;png. Soita=4p1p2:::pn1. Montrer par l"absurde queaadmet un diviseur premier de la forme 4k+3. 4. Montrer que ceci est impossible et donc que Xest infini.

Indication pourl"exer cice1 NAttention le reste d"une division euclidienne est plus petit que le quotient !

Indication pour

l"exer cice

4 NUtiliser les modulos (ici modulo 8), un entier est divisible par 8 si et seulement si il est équivalent à 0 modulo

8. Ici vous pouvez commencer par calculer 7

n(mod 8).Indication pourl"exer cice5 NIl faut travailler modulo 13, tout d"abord réduire 100 modulo 13. Se souvenir que siab(mod 13)alors

a kbk(mod 13). Enfin calculer ce que cela donne pour les exposantsk=1;2;3;:::en essayant de trouver une règle générale.Indication pourl"exer cice6 N1.Écrire n=2p+1. 2. Écrire n=2pet discuter selon quepest pair ou impair. 3.

Utiliser la première question.

4. P arl"absurde supposer que cela s"écri vecomme un carré, par e xemplea2+b2+c2=n2puis discuter

selon quenest pair ou impair.Indication pourl"exer cice11 NCommencer par simplifier l"équation ! Ensuite trouver une solution particulière(x0;y0)à l"aide de l"algorithme

d"Euclide par exemple. Ensuite trouver un expression pour une solution générale.Indication pourl"exer cice12 NIl ne faut surtout pas chercher à calculer 15!=123415, mais profiter du fait qu"il est déjà

"presque" factorisé.Indication pourl"exer cice13 NRaisonner par l"absurde et utiliser le lemme de Gauss.

Indication pour

l"exer cice

14 NPour 1. utiliser l"égalité

x b1= (x1)(xb1++x+1): Pour 2. raisonner par contraposition et utiliser la question 1. La question 3. est difficile ! Supposera>b. Commencer par montrer que pgcd(2a1;2b1) =pgcd(2a 2 b;2b1) =pgcd(2ab1;2b1). Cela vour permettra de comparer l"agorithme d"Euclide pour le calcul de

pgcd(a;b)avec l"algorithme d"Euclide pour le calcul de pgcd(2a1;2b1).Indication pourl"exer cice15 NRaisonner par contraposition (ou par l"absurde) : supposer quenn"est pas de la forme 2k, alorsnadmet un

facteur irréductiblep>2. Utiliser aussixp+1= (x+1)(1x+x2x3+:::+xp1)avecxbien choisi.Indication pourl"exer cice16 N4

1.Écrire

C ip=p(p1)(p2):::(p(i+1))i! et utiliser le lemme de Gauss ou le lemme d"Euclide. 2.

Raisonner a vecles modulos, c"est-à-dire prouv erapa(modp).Indication pourl"exer cice17 N1.Il f autêtre très soigneux : nest fixé une fois pour toute, la récurrence se fait surk>1.

2.

Utiliser la question précédente a vecm=n+k.

3. P arl"absurde, supposer qu"il y a seulement Nnombres premiers, considérerN+1 nombres du typeFi.

Appliquer le "principe du tiroir" :si vous avez N+1chaussettes rangées dans N tiroirs alors il existe

(au moins) un tiroir contenant (plus de) deux chaussettes.5

Correction del"exer cice1 NLa seule chose à voir est que pour une division euclidienne le reste doit être plus petit que le quotient. Donc les

divisions euclidiennes s"écrivent : 96842=256378+74 et 96842=258375+92.Correction del"exer cice2 NIl suffit de constater que pour 4 nombres consécutifs il y a nécessairement : un multiple de 2, un multiple de

3, un multiple de 4 (distinct du mutliple de 2). Donc le produit de 4 nombres consécutifs est divisible par

234=24.Correction del"exer cice3 NEcriren=p2+q2et étudier le reste de la division euclidienne denpar 4 en distinguant les différents cas de

parité depetq.Correction del"exer cice4 NRaisonnons modulo 8 :

7 1(mod 8):

Donc 7 n+1(1)n+1(mod 8):

Le reste de la division euclidienne de 7

n+1 par 8 est donc(1)n+1 donc Sinest impair alors 7n+1 est

divisible par 8. Et sinest pair 7n+1 n"est pas divisible par 8.Correction del"exer cice5 NIl sagit de calculer 100

1000modulo 13. Tout d"abord 1009(mod 13)donc 100100091000(mod 13). Or

9

2813(mod 13), 9392:93:91(mod 13), Or 9493:99(mod 13), 9594:99:93

(mod 13). Donc 10010009100093:333+1(93)333:91333:99(mod 13).Correction del"exer cice6 N1.Soit nun nombre impair, alors il s"écritn=2p+1 avecp2N. Maintenantn2= (2p+1)2=4p2+4p+

1=4p(p+1)+1. Doncn21(mod 8).

2. Si nest pair alors il existep2Ntel quen=2p. Etn2=4p2. Sipest pair alorsp2est pair et donc n

2=4p2est divisible par 8, doncn20(mod 8). Sipest impair alorsp2est impair et doncn2=4p2

est divisible par 4 mais pas par 8, doncn24(mod 8). 3. Comme aest impair alors d"après la première questiona21(mod 8), et de mêmec21(mod 8), c

21(mod 8). Donca2+b2+c21+1+13(mod 8). Pour l"autre reste, écrivonsa=2p+1 et

b=2q+1,c=2r+1, alors 2ab=2(2p+1)(2q+1) =8pq+4(p+q)+2. Alors 2(ab+bc+ca) =

8pq+8qr+8pr+8(p+q+r)+6, donc 2(ab+bc+ca)6(mod 8).

4. Montrons par l"absurde que le nombre a2+b2+c2n"est pas le carré d"un nombre entier. Supposons qu"il existen2Ntel quea2+b2+c2=n2. Nous savons quea2+b2+c23(mod 8). Sinest impair alorsn21(mod 8)et sinest pair alorsn20(mod 8)oun24(mod 8). Dans tous les casn2

n"est pas congru à 3 modulo 8. Donc il y a une contradiction. La conclusion est que l"hypothèse de

départ est fausse donca2+b2+c2n"est pas un carré. Le même type de raisonnement est valide pour

2(ab+bc+ca).

Pourab+bc+cal"argument est similaire : d"une part 2(ab+bc+ca)6(mod 8)et d"autre part si, par l"absurde, on supposeab+bc+ca=n2alors selon la parité dennous avons 2(ab+bc+ca)2n22

(mod 8)ou à 0(mod 8). Dans les deux cas cela aboutit à une contradiction. Nous avons montrer que

ab+bc+can"est pas un carré. 6

Correction del"exer cice7 NIl s"agit ici d"utiliser la décomposition des nombres en facteurs premiers.

1.

126 =2:32:7 et 230=2:5:23 donc le pgcd de 126 et 230 est 2.

2.

390 =2:3:5:13, 720=24:32:5, 450=2:32:52et donc le pgcd de ces trois nombres est 2:3:5=30.

3.

pgcd (180;606;750) =6.Correction del"exer cice8 NSoienta;bdeux entiers de pgcd 18 et de somme 360. Soita0;b0tel quea=18a0etb=18b0. Alorsa0etb0sont

premiers entre eux, et leur somme est 360=18=20.

Nous pouvons facilement énumérer tous les couples d"entiers naturels(a0;b0)(a06b0) qui vérifient cette

condition, ce sont les couples : (1;19);(3;17);(7;13);(9;11):

Pour obtenir les couples(a;b)recherchés (a6b), il suffit de multiplier les couples précédents par 18 :

(18;342);(54;306);(126;234);(162;198):Correction del"exer cice9 N1.pgcd (18480;9828) =84; 2.

25 18480+(47)9828=84.Correction del"exer cice10 N1.a=9b+10.

quotesdbs_dbs7.pdfusesText_5

[PDF] arithmétique dans n tronc commun

[PDF] arithmétique dans z cours pdf

[PDF] arithmétique dans z exercices corrigés mpsi

[PDF] arithmétique exercices et problèmes

[PDF] arithmétique terminale s exercices corrigés

[PDF] arjel analyse trimestrielle

[PDF] arjel t1 2016

[PDF] arjel t2 2016

[PDF] armande le pellec muller

[PDF] armature urbaine définition

[PDF] armement du chevalier

[PDF] armes autorisées en belgique

[PDF] armor electric system

[PDF] arnold blueprint to cut

[PDF] arrêt 7 mai 2008 rétractation de l'offre