[PDF] Algèbre - Cours de première année





Previous PDF Next PDF



trigonometrie-exercices-corriges.pdf

TRIGONOMETRIE - EXERCICES CORRIGES. Trigonométrie rectangle. Exercice n°1. Compléter les égalités en 2) Dans le deuxième cas (R=300 R'=250 et.



Trigonométrie – Exercices - Corrigé

Trigonométrie – Exercices - Corrigé. 2. a. ?. Pour résoudre l'inéquation. ?. on trace le cercle et on trace la droite d'équation.



Exercices supplémentaires : Trigonométrie

Exercices supplémentaires : Trigonométrie. Partie A : Cercle trigonométrique cosinus et sinus. Exercice 1. Convertir en radians les mesures d'angles 



Contrôle : « Trigonométrie »

l'angle aigu ˆ. HIM . 2/ Donne un encadrement de cosinus et sinus. 3/ Donne les deux relations trigonométriques. Exercice 2 (45 



Trigonométrie dans le cercle

EXERCICES. 6 septembre 2014. Trigonométrie dans le cercle. Le radian. EXERCICE 1. Convertir en radians les mesures données en degrés :.



1H - Exercices Géométrie - Trigonométrie

Calculer de combien de radians la terre tourne en une seconde. Exercice 16: Oscillation d'un pendule Un balancier dans une horloge de grand-père mesure 12 m 



Algèbre - Cours de première année

La seconde partie est entièrement consacrée à l'algèbre linéaire. Exo7 toutes les vidéos correspondant à ce cours ainsi que des exercices corrigés.



Exercices corrigés sur le cercle trigonométrique - Math seconde

Classe de 2nde. Corrigé de l'exercice 1. ?1. Convertir les cinq mesures suivantes en radians : 244? 120?



Exercices corrigés sur le cercle trigonométrique - Math seconde

Classe de 2nde. Corrigé de l'exercice 1. ?1. Convertir les cinq mesures suivantes en radians : 299? 137?



Exercices de mathématiques - Exo7

20 104.02 Racine carrée équation du second degré. Exercice 497. Calculer les racines carrées de 1



TRIGONOMETRIE - EXERCICES CORRIGES - Meabilis

Donner une mesure en radians de l'angle formé par la petite aiguille et la grande aiguille d'une montre (plusieurs réponses sont possibles) 1) à 3 h 2) à 1 h 3) à 4 h 4) à 6 h 5) à 8 h Exercice n° 10 1) Placer sur le cercle trigonométriques ci-dessous les points M tels que



Exercices supplémentaires : Trigonométrie

EQUATIONS TRIGONOMETRIQUES EXERCICES CORRIGES Exercice n°1 Résoudre dans les équations suivantes : cos() 2 2 x = 1 sin 3 2 x = cos 3 cos 43 xx ? ? += +



Trigonométrie du triangle quelconque

Trigonométrie du triangle quelconque - Corrigés des exercices 3 Corrigé de l’exercice 2 2 Deuxcôtéssontdonnés:a= 58 b= 10 Unangleestdonné: = 129 Résoudrel’équationdudeuxièmedegrédonnéeparlethéorèmeducosinus c 2= a2 +b 2abcos() enéliminantlessolutionsnégatives: c= 64:761189 cos( ) = b2 +c2 2a 2bc = 0:7180316 = 44:107793 = 6:



a2- Trigonométrie - Corrigés

Trigonométrie corrigés des exercices maths renforcées Author: Marcel Délèze Subject: Fonctions trigonométriques Relations trigonométriques Equations et inéquations trigonométriques Niveau secondaire II (lycée) option scientifique corrigés des exercices Keywords



Nom :TRIGONOMETRIE2nde

Nom :TRIGONOMETRIE2nde Exercice 2 En s’aidant des deux ?gures distinctes suivantes retrouver les valeurs du tableau ci-dessous : —un triangle ABCisoc`ele rectangle en A;



Trigonométrie Exercices - Corrigé - ac-versaillesfr

Trigonométrie – Exercices - Corrigé 2 a ? Pour résoudre l’inéquation ? on trace le cercle et on trace la droite d’équation ? Les réels x solutions de l’inéquation sont les réels x dont les abscisses des points images sur sont inférieures strict à ? (partie verte) Par lecture graphique



CHAPITRE I TRIGONOMETRIE - Lycée Michel Rodange

II e CD – math I – Trigonométrie - 1 - CHAPITRE I TRIGONOMETRIE 1) Le cercle trigonométrique • Un cercle trigonométrique est un cercle C de rayon 1 qui est orienté ce qui veut dire qu’on



Exercices supplémentaires : Trigonométrie

Exercices supplémentaires : Trigonométrie Partie A : Cercle trigonométrique cosinus et sinus Exercice 1 Convertir en radians les mesures d’angles exprimées en degrés : 60° ;150° ;10° ;12° ;198° ;15° Exercice 2 Dans chacun des cas suivant donner trois autres réels associés au même point sur le cercle trigonométrique : 1) – 2)



Angles et trigonométrie Corrigés d’exercices

Angles et trigonométrie Corrigés d’exercices 1 Mesure principale d’un angle orientéPropriétés des angles orientésEquations ou inéquations trigonométriquesExercices Top Chrono Angles et trigonométrie Corrigés d’exercices



TRIGONOMÉTRIE (II) CORRECTION DES EXERCICES - Cours Galilée

CORRECTION DES EXERCICES ÉQUATIONS ET INÉQUATIONS TRIGONOMÉTRIQUES Exercice 1 : Résolvons l’équation cos(x) = ? ? 3 2 cos(x) = ? ? 3 2 ? cos(x) = ?cos ? 6 ? cos(x) = cos ? ? ? 6 ? cos(x) = cos 5? 6 ? x = 5? 6 +2k? ou x = ? 5? 6 +2k? avec k ? Z 1 lorsque x appartient à l’intervalle [0;?]; On a : • x



Trigonométrie et angles orientés

• Mesures principales : exercices 1314page218 • Graphiquement : exercices 2022p219 • Equations inéquations : exercices 414347p221 2 6 Pour aller plus loin Les fonctions trigonométriques sont très importantes en mathématiques Elles apparaissent



Searches related to exercices corrigés trigo seconde filetype:pdf

Trigonométrie – Exercices - Devoirs Exercice 1 corrigé disponible 1 Placer sur le cercle trigonométrique les points représentatifs des réels suivants : 2? 3; ? 3? 4; 17? 6; 5? 2 2 Exercice 2 corrigé disponible Exercice 3 corrigé disponible Exercice 4 corrigé disponible Exercice 5 corrigé disponible 1/2

Quels sont les exercices de trigonométrie?

  • Exercices supplémentaires : Trigonométrie Partie A : Cercle trigonométrique, cosinus et sinus Exercice 1 Convertir en radians les mesures d’angles exprimées en degrés : 60° ;150° ;10° ;12° ;198° ;15°

Quels sont les exercices supplémentaires de trigonométrie?

  • Exercices supplémentaires : Trigonométrie Partie A : Cercle trigonométrique, cosinus et sinus Exercice 1 Angle en ° 60 150 10 12 198 15 Angle en radians 3 5 6 18 15 11 10 12 Exercice 2 1) –f : f;3f;5f et plus généralement f+2fP avec P?? 2) et plus généralement ?  +2fP , soit 18R 

Comment résoudre une équation trigonométrique ?

  • EQUATIONS TRIGONOMETRIQUES CORRECTION Exercice n°1 Les équations trigonométriques, qui possèdent en général une infinité de solutions (sauf si on restreint l’intervalle de définition), se résolvent presque exclusivement en utilisant les équivalences suivantes : 2, cos cos ou 2,

Comment faire une trigonométrie rectangle?

  • TRIGONOMETRIE - EXERCICES CORRIGES Trigonométrie rectangle Exercice n° 1. Compléter les égalités en respectant bien les notations de l’énoncé cos ABC = sin ABC = tan ABC = cos ACB = sin ACB = tan ACB = cos ?= sin ?= tan ?= cos ?= sin ?= tan ?=

ALGÈBRE

COURS DE MATHÉMATIQUES

PREMIÈRE ANNÉEExo7

À la découverte de l"algèbreLa première année d"études supérieures pose les bases des mathématiques. Pourquoi se lancer dans une

telle expédition? Déjà parce que les mathématiques vous offriront un langage unique pour accéder à une

multitude de domaines scientifiques. Mais aussi parce qu"il s"agit d"un domaine passionnant! Nous vous

proposons de partir à la découverte des maths, de leur logique et de leur beauté.

Dans vos bagages, des objets que vous connaissez déjà : les entiers, les fonctions... Ces notions en apparence

simples et intuitives seront abordées ici avec un souci de rigueur, en adoptant un langage précis et en

présentant les preuves. Vous découvrirez ensuite de nouvelles théories (les espaces vectoriels, les équations

différentielles,...).

Ce tome est consacré à l"algèbre et se divise en deux parties. La première partie débute par la logique

et les ensembles, qui sont des fondamentaux en mathématiques. Ensuite vous étudierez des ensembles

particuliers : les nombres complexes, les entiers ainsi que les polynômes. Cette partie se termine par l"étude

d"une première structure algébrique, avec la notion de groupe.

La seconde partie est entièrement consacrée à l"algèbre linéaire. C"est un domaine totalement nouveau pour

vous et très riche, qui recouvre la notion de matrice et d"espace vectoriel. Ces concepts, à la fois profonds et

utiles, demandent du temps et du travail pour être bien compris.

Les efforts que vous devrez fournir sont importants : tout d"abord comprendre le cours, ensuite connaître

par cœur les définitions, les théorèmes, les propositions... sans oublier de travailler les exemples et les

démonstrations, qui permettent de bien assimiler les notions nouvelles et les mécanismes de raisonnement.

Enfin, vous devrez passer autant de temps à pratiquer les mathématiques : il est indispensable de résoudre

activement par vous-même des exercices, sans regarder les solutions. Pour vous aider, vous trouverez sur le

site Exo7 toutes les vidéos correspondant à ce cours, ainsi que des exercices corrigés.

Au bout du chemin, le plaisir de découvrir de nouveaux univers, de chercher à résoudre des problèmes... et

d"y parvenir. Bonne route!

Sommaire

1 Logique et raisonnements

1

1 Logique

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Raisonnements

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Ensembles et applications

11

1 Ensembles

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Injection, surjection, bijection

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Ensembles finis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Relation d"équivalence

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Nombres complexes31

1 Les nombres complexes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Racines carrées, équation du second degré

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Argument et trigonométrie

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Nombres complexes et géométrie

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Arithmétique45

1 Division euclidienne et pgcd

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 Théorème de Bézout

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Nombres premiers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Congruences

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Polynômes59

1 Définitions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2 Arithmétique des polynômes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Racine d"un polynôme, factorisation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Fractions rationnelles

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Groupes71

1 Groupe

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2 Sous-groupes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3 Morphismes de groupes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Le groupeZ/nZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Le groupe des permutationsSn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Systèmes linéaires87

1 Introduction aux systèmes d"équations linéaires

. . . . . . . . . . . . . . . . . . . . . . . . . . 87

2 Théorie des systèmes linéaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3 Résolution par la méthode du pivot de Gauss

. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8 Matrices99

1 Définition

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2 Multiplication de matrices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3 Inverse d"une matrice : définition

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4 Inverse d"une matrice : calcul

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Inverse d"une matrice : systèmes linéaires et matrices élémentaires

. . . . . . . . . . . . . . 110

6 Matrices triangulaires, transposition, trace, matrices symétriques

. . . . . . . . . . . . . . . 117

9 L"espace vectorielRn123

1 Vecteurs deRn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

2 Exemples d"applications linéaires

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3 Propriétés des applications linéaires

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

10 Espaces vectoriels137

1 Espace vectoriel (début)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

2 Espace vectoriel (fin)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3 Sous-espace vectoriel (début)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4 Sous-espace vectoriel (milieu)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Sous-espace vectoriel (fin)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6 Application linéaire (début)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Application linéaire (milieu)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 Application linéaire (fin)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

11 Dimension finie167

1 Famille libre

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

2 Famille génératrice

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

3 Base

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4 Dimension d"un espace vectoriel

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5 Dimension des sous-espaces vectoriels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

12 Matrices et applications linéaires

187

1 Rang d"une famille de vecteurs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

2 Applications linéaires en dimension finie

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

3 Matrice d"une application linéaire

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

4 Changement de bases

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

13 Déterminants211

1 Déterminant en dimension 2 et 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

2 Définition du déterminant

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

3 Propriétés du déterminant

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

4 Calculs de déterminants

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

5 Applications des déterminants

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Index

Logique et

raisonnementsChapitre 1

Quelques motivations

•Il est important d"avoir unlangage rigoureux. La langue française est souvent ambigüe. Prenons

l"exemple de la conjonction "ou»; au restaurant "fromage ou dessert» signifie l"un ou l"autre mais pas

les deux. Par contre si dans un jeu de carte on cherche "les as ou les cœurs» alors il ne faut pas exclure

l"as de cœur. Autre exemple : que répondre à la question "As-tu10euros en poche?» si l"on dispose de

15 euros?

Il y a des notions difficiles à expliquer avec des mots : par exemple la continuité d"une fonction est

souvent expliquée par "on trace le graphe sans lever le crayon». Il est clair que c"est une définition peu

satisfaisante. Voici la définition mathématique de la continuité d"une fonctionf:I→Ren un point

x0∈I: ∀ε >0∃δ >0∀x∈I(|x-x0|< δ=⇒ |f(x)-f(x0)|< ε). C"est le but de ce chapitre de rendre cette ligne plus claire! C"est lalogique.

Enfin les mathématiques tentent dedistinguer le vrai du faux. Par exemple "Est-ce qu"une augmentation

de20%, puis de30%est plus intéressante qu"une augmentation de50%?». Vous pouvez penser "oui»

ou "non», mais pour en être sûr il faut suivre une démarche logique qui mène à la conclusion. Cette

démarche doit être convaincante pour vous mais aussi pour les autres. On parle deraisonnement.

Les mathématiques sont un langage pour s"exprimer rigoureusement, adapté aux phénomènes complexes,

qui rend les calculs exacts et vérifiables. Le raisonnement est le moyen de valider - ou d"infirmer - une

hypothèse et de l"expliquer à autrui.

LOGIQUE ET RAISONNEMENTS1. LOGIQUE2

1. Logique

1.1. Assertions

Uneassertionest une phrase soit vraie, soit fausse, pas les deux en même temps.

Exemples :

"Il pleut.» "Je suis plus grand que toi.» " 2+2=4 » " 2×3=7 » "Pour tout x∈R, on a x2⩾0.»

"Pour tout z∈C, on a|z|=1.»SiPest une assertion etQest une autre assertion, nous allons définir de nouvelles assertions construites à

partir dePet deQ.

L"opérateur logique "et»

L"assertion "PetQ» est vraie siPest vraie etQest vraie. L"assertion "P et Q» est fausse sinon.

On résume ceci en unetable de vérité:

P\QVF VVF FFF

FIGURE1.1 - Table de vérité de "P et Q»

Par exemple siPest l"assertion "Cette carte est un as» etQl"assertion "Cette carte est cœur» alors l"assertion

"P et Q» est vraie si la carte est l"as de cœur et est fausse pour toute autre carte.

L"opérateur logique "ou»

L"assertion "PouQ» est vraie si l"une (au moins) des deux assertionsPouQest vraie. L"assertion "Pou

Q» est fausse si les deux assertionsPetQsont fausses.

On reprend ceci dans la table de vérité :

P\QVF VVV FVF

FIGURE1.2 - Table de vérité de "P ou Q»

SiPest l"assertion "Cette carte est un as» etQl"assertion "Cette carte est cœur» alors l"assertion "PouQ»

est vraie si la carte est un as ou bien un cœur (en particulier elle est vraie pour l"as de cœur).

Remarque.

Pour définir les opérateurs "ou», "et» on fait appel à une phrase en français utilisant les motsou,et! Les

tables de vérités permettent d"éviter ce problème.

La négation "non»

L"assertion "nonP» est vraie siPest fausse, et fausse siPest vraie.

LOGIQUE ET RAISONNEMENTS1. LOGIQUE3

PVF nonPFV

FIGURE1.3 - Table de vérité de "non P»

L"implication=⇒

La définition mathématique est la suivante :L"assertion "(non P) ou Q» est notée "P=⇒Q».Sa table de vérité est donc la suivante :

P\QVF VVF FVV FIGURE1.4 - Table de vérité de "P=⇒Q» L"assertion "P=⇒Q» se lit en français "P implique Q». Elle se lit souvent aussi "si P est vraie alors Q est vraie» ou "si P alors Q».

Par exemple :

" 0⩽x⩽25=⇒px⩽5 » est vraie (prendre la racine carrée). "x∈]-∞,-4[ =⇒x2+3x-4>0 » est vraie (étudier le binôme). " sin(θ) =0=⇒θ=0 » est fausse (regarder pourθ=2πpar exemple).

•"2+2=5=⇒p2=2» est vraie! Eh oui, siPest fausse alors l"assertion "P=⇒Q» est toujours

vraie.

L"équivalence⇐⇒

L"équivalenceest définie par :"P⇐⇒Q» est l"assertion "(P=⇒Q) et (Q=⇒P)».

On dira "Pest équivalent àQ» ou "Péquivaut àQ» ou "Psi et seulement siQ». Cette assertion est vraie

lorsquePetQsont vraies ou lorsquePetQsont fausses. La table de vérité est : P\QVF VVF FFV FIGURE1.5 - Table de vérité de "P⇐⇒Q»

Exemples :

Pourx,x′∈R, l"équivalence "x·x′=0⇐⇒(x=0ou x′=0)» est vraie. Voici une équivalencetoujours fausse(quelle que soit l"assertionP) : "P⇐⇒non(P)».

On s"intéresse davantage aux assertions vraies qu"aux fausses, aussi dans la pratique et en dehors de ce

chapitre on écrira "P⇐⇒Q» ou "P=⇒Q» uniquement lorsque ce sont des assertions vraies. Par

exemple si l"on écrit "P⇐⇒Q» cela sous-entend "P⇐⇒Qest vraie». Attention rien ne dit quePetQ

soient vraies. Cela signifie quePetQsont vraies en même temps ou fausses en même temps.

LOGIQUE ET RAISONNEMENTS1. LOGIQUE4Proposition 1.

Soient P,Q,R trois assertions. Nous avons les équivalences (vraies) suivantes : 1.

P ⇐⇒non(non(P))

2.(PetQ)⇐⇒(QetP)

3.(PouQ)⇐⇒(QouP)

4.non(PetQ)⇐⇒(nonP)ou(nonQ)

5.non(PouQ)⇐⇒(nonP)et(nonQ)

6.Pet(QouR)⇐⇒(PetQ)ou(PetR)

7.Pou(QetR)⇐⇒(PouQ)et(PouR)

8.

" P =⇒Q »⇐⇒"non(Q) =⇒non(P)»Démonstration.Voici des exemples de démonstrations :

4.Il suffit de comparer les deux assertions "non(P et Q)» et "(non P)ou(non Q)» pour toutes les valeurs

possibles dePetQ. Par exemple siPest vrai etQest vrai alors "PetQ» est vrai donc "non(P et Q)»

est faux; d"autre part (nonP) est faux, (nonQ) est faux donc "(non P)ou(non Q)» est faux. Ainsi dans

ce premier cas les assertions sont toutes les deux fausses. On dresse ainsi les deux tables de vérités et

comme elles sont égales les deux assertions sont équivalentes. P\QVF VFV FVV FIGURE1.6 - Tables de vérité de "non(P et Q)» et de "(non P)ou(non Q)» 6.

On fait la même chose mais il y a trois variables :P,Q,R. On compare donc les tables de vérité d"abord

dans le cas oùPest vrai (à gauche), puis dans le cas oùPest faux (à droite). Dans les deux cas les deux

assertions "P et(Q ou R)» et "(P et Q)ou(P et R)» ont la même table de vérité donc les assertions

sont équivalentes. Q\RVF VVV FVF Q\RVF VFF FFF 8.

Par définition, l"implication "P=⇒Q» est l"assertion "(nonP) ouQ». Donc l"implication "non(Q) =⇒

non

(P)» est équivalente à "non(non(Q))ou non(P)» qui équivaut encore à "Q ou non(P)» et donc est

quotesdbs_dbs17.pdfusesText_23
[PDF] exercices corrigés trigonométrie 1ere s pdf

[PDF] exercices corrigés value at risk

[PDF] exercices corrigés vba excel pdf

[PDF] exercices corrigés vecteurs seconde pdf

[PDF] exercices corrigés windows 7

[PDF] exercices cout marginal premiere es

[PDF] exercices maths cap vente

[PDF] exercices maths ece 1

[PDF] exercices maths ece 2

[PDF] exercices maths première stmg

[PDF] exercices maths seconde difficiles

[PDF] exercices maths seconde fonctions

[PDF] exercices maths terminale stg statistiques

[PDF] exercices maths tronc commun scientifique france bac international

[PDF] exercices matrices terminale es