[PDF] Nouvelle-Calédonie 5 mars 2015





Previous PDF Next PDF



Nouvelle-Calédonie 5 mars 2015

5 mars 2015 Corrigé du baccalauréat S (obligatoire). Nouvelle-Calédonie 5 mars 2015. EXERCICE 1. 5 points. Commun à tous les candidats.



Corrigé du baccalauréat S – Nouvelle-Calédonie 19 novembre 2015

Corrigé du baccalauréat S – Nouvelle-Calédonie. 19 novembre 2015. EXERCICE 1. 7 points. Commun à tous les candidats. Partie A.



Bulletin officiel n°17 du 23 avril 2015 Sommaire

23 avr. 2015 décret n° 2015-372 du 31-3-2015 - J.O. du 2-4-2015 (NOR ... ce diplôme ou d'un baccalauréat de l'enseignement du second degré ;.



Nouvelle-Calédonie 2 mars 2015 - Corrigé

P . Baccalauréat ES Nouvelle-Calédonie. 2 mars 2015. EXERCICE 1. 5 points. Commun à tous les candidats. Soit f la fonction définie sur l'intervalle [15 



Sujet et corrigé mathématiques bac ES 2015

10 juin 2015 Maths Centres étrangers 2015. Baccalauréat ES. A. P. M. E. P.. EXERCICE 2. 5 points. Candidats n'ayant pas suivi l'enseignement de ...



BACCALAURÉAT GÉNÉRAL SESSION 2015 Épreuve de

Baccalauréat général - Série S - Philosophie. 2/2. Session 2015. Sujet n°1. Sommes-nous des citoyens du monde ? Sujet n°2. La connaissance peut-elle nuire 



Baccalauréat S - 2015

9 sept. 2015 Baccalauréat S : l'intégrale des corrigés 2015. A. P. M. E. P.. ANNEXE à remettre avec la copie. EXERCICE 4 : Candidats n'ayant pas suivi ...



Sujet et corrigé de maths bac s obligatoire

https://www.freemaths.fr/annales-mathematiques/bac-s-mathematiques-polynesie-2015-obligatoire-corrige-exercice-5-suites.pdf



Corrigé du baccalauréat S Amérique du Sud 24 novembre 2015

24 nov. 2015 Corrigé du baccalauréat S Amérique du Sud. 24 novembre 2015 ... n = 4×2+(?1)×(?3)+2×2 = 15 = 0 donc les deux vecteurs ne sont pas ...



Corrigé du baccalauréat S Asie 16 juin 2015

16 juin 2015 Corrigé du baccalauréat S. A. P. M. E. P.. Exercice 3. 6 points. Commun à tous les candidats. Pour tout n de N on définit la fonction fn ...



The North Carolina Driver’s Handbook - NC

Everyone’s driving is impaired at a blood alcohol concentration or BAC of 0 08 percent but many people are affected at much lower levels Research shows that the risk of being involved in a crash increases when the alcohol level is 0 05 percent and at 0 08 percent the risk of causing a fatal crash is even greater

A. P. M. E. P.

Durée : 4 heures

?Corrigédu baccalauréat S (obligatoire)?

Nouvelle-Calédonie 5 mars 2015

EXERCICE15 points

Commun à tous lescandidats

1. a.D"après l"énoncé la fonctionf2est dérivable surR.

On af?2(x)=ex-2.

Or e x-2=0??ex=2??x=ln2. Donc :

Donc e

x-2>0??x>ln2 : la fonctionfest décroissante sur [-∞; ln2[. e x-2<0??x2(ln2)=eln2-2×ln2=2-2ln2 est le minimum de la fonctionf2surR.

On a le tableau de variations suivant :

x-∞ln2+∞ f ?(x)-0+ f

2-2ln2

b.Comme 2-2ln2≈0,614>0, le minimum de la fonctionf2étant supérieur à zéro, on en déduit que la fonction est strictement positive surR, soit e x-2x>0??ex>2xdonclareprésentation graphiquedelafonctionx?-→exestaudessus de la droiteΔ2.

ΓetΔ2n"ont pas de point commun.

2.fa(x)=ex-ax

a.•limite en plus l"infini : f a(x)=x?ex x-a?

On sait que lim

x→+∞e x x=+∞donc limx→+∞e xx-a=+∞, donc par produit des limites lim x→+∞fa(x)=+∞.

•limite en moins l"infini :

On sait que lim

x→-∞ex=0. Donc limx→-∞fa(x)=+∞. b.faest dérivable surRcomme somme de fonctions dérivables et f ?a(x)=ex-a. e x-a=0??ex=a??x=lna(cara>0). On a le même tableau de variations que pourf2en remplaçant 2 para. c.La fonctionfadécroissante, puis croissante admet donc un minimumfa(lna)=a-alna. d.a-alna=0??a(1-lna)=0??1-lna=0 (cara?=0)??1=lna??e1=elna?? e=a.

On a donc :

•a-alna>0??ae : le minimum est inférieur à zéro.

Corrigédu baccalauréat SA. P. M. E. P.

x-∞lna+∞ f ?(x)-0+ f a-alna Donc sur l"intervalle ]-∞; lna[, la fonctionfacontinue car dérivable et strictement mono- tonesurcetintervallepassed"unevaleurpositiveàunevaleurnégative: ilexistedonc,d"après

le théorème de la valeur intermédiaire un réelα?]-∞; lna[ tel quefa(α)=0, soit eα=aα.

De même sur ]lna;+∞[, la fonctionfacontinue car dérivable et strictement monotone sur

cet intervalle passe d"une valeur négative à une valeur positive : il existe donc un réelβ?

]lna;+∞[ tel quefa(β)=0, soit eβ=aβ. Conclusion : sia>e la courbeΓet la droiteΔaont deux points communs. •a-alna=0??a=e, la fonctionfa=fes"annule une seule fois enx=1, doncfe(1)=0 : ΓetΔeont un seul point commun (la droite est tangente à la courbe) 1234
1-1 y=2x y=ex y=3x O

EXERCICE25 points

Commun à tous lescandidats

1. a.2% des puces livrées ont une durée de vie courte, c"est-à-dire

P

L(C)=0,02.

b.On déduit quePL? C? =1-0,02=0,98 et P?

L∩

C? =P(L)×PL?C? =0,95×0,98=0,931. c.Comme seules les puces livrées peuvent avoir une durée de viecourte on a : P?

L?(L∩C)?

=P?L? +P(L∩C)=0,05+0,019=0,069.

2. a.On sait queP(X?1000)=0,02.

Xsuit une loi exponentielle de paramètreλ, donc : e 1000.

Nouvelle-Calédonie25 mars 2015

Corrigédu baccalauréat SA. P. M. E. P.

Donc environ 81,7% des puces ont une durée de vie supérieure ou égale à 10000 heures. Soit : environ 12,2% des puces ont une durée de vie comprise entre 20 000 et 30 000 heures.

3. a.On effectue 15000 tirages indépendants les uns des autres. La probabilité qu"une puce livrée

ait une vie courte estp=0,003. Ysuit donc une loi binomiale de paramètresn=15000 etp=0,003.. b.E(Y)=n×p=15000×0,003=45. Il y a environ 45 puces à durée de vie courte sur les 15000 extraites de la production. c.On aP(40?Y?50)=P(Y?50)-P(Y<40)=P(Y?50)-P(Y?39). La calculatrice donneP(Y?50)≈0,7966 etP(Y?39)≈0,2080, donc :

EXERCICE35 points

Commun à tous lescandidats3

1. a.Une représentation paramétrique deD1s"obtient en traduisant l"égalité---→A1M=t-→u1avec

t?Rsoit :???x-0=t y-2=2t z-(-1)=3tt?R?????x=t y=2+2t z= -1+3tt?R. b.D2a pour représentation paramétrique :???x=1+k y=0-2k z=2+0kk?R. On reconnait qu"un vecteur directeur deD2est-→u2(( 1 -2 0)) c.A2?D2?????-1=1+k

4=0-2k

2=2+0k?????-2=k

-2=k

2=2qui a une solutionk=-2.

Le pointA2appartient àD2.

2.Les vecteurs directeurs deD1et deD2ne sont manifestement pas colinéaires, donc les droites

ne sont pas parallèles. Elles sont sécantes s"il existe des réelstetktels que :???t=1+k

2+2t=0-2k

-1+3t=2+0k?????t=1+k

2+2+2k=0-2k

-1+3+3k=2+0k?????t=1+k

4k= -4

3k=0??

?t=1+k k= -1 k=0 Ce système n"a pas de solution donc il n"existe pas de point commun aux deux droites, elles ne sont donc pas coplanaires.

3.Les droitesD1etΔ1contiennent le pointA1. Pour montrer qu"elles sont perpendiculaires il suffit

de montrer que deux de leurs vecteurs directeurs sont orthogonaux :-→u1·-→v=-6-6+12=0. Conclusion : les droitesD1etΔ1sont perpendiculaires.

4.Les droitesD2etΔ2sont aussi perpendiculaires

a. -→nest un vecteur normal au planP1s"il est orthogonal aux deux vecteurs non colinéaires et non nuls de ce plan soit-→u1et-→v; or-→n·-→u1=-6-6+12=0

Nouvelle-Calédonie35 mars 2015

Corrigédu baccalauréat SA. P. M. E. P.

Le vecteur-→nest orthogonal adeux vecteurs non colinéaires du planP1. Ilest par conséquent

normal à ce plan. b.SiP1etP2sont parallèles-→nvecteur normal au planP1est aussi un vecteur normal au plan P

2; il est donc orthogonal à tout vecteur non nul du planP2commeu2et-→v.

On a bien-→n·-→v=0, mais-→n·-→u2=17+44+0=61?=0. Donc-→nn"est pas normal au planP2et les deux plansP1etP2ne sont pas parallèles.

5.Δest parallèle àΔ1etΔ2lesquelles sont respectivement perpendiculaire àD1etD2.

Par conséquent la droiteΔest orthogonale aux droitesD1etD2. Or cette droite appartient au planP1et au planP2. Elle est donc perpendiculaire aux droitesD1 etD2.

Il existe donc une droite de l"espace perpendiculaire à la droiteD1et àD2: c"est la droiteΔ.

EXERCICE45 points

Candidatsn"ayantpas suivi l"enseignementde spécialité

1.u1=?

3-0=?3v1=1+?3×0=1;

u 2=?

3×?3-1=3-1=2v2=?3+?3=2?3.

2. a. STK

100?3?31

3-?36-?32

Les valeurs trouvées pourN=2 ne correspondent pas à celles deu2etv2. L"algorithme n"affiche donc pas les valeurs deuNetvN. Une version modifiée de l" algorithme est par exemple :

Entrée :Nest un nombre entier

Variables :Kest un nombre entier

Sest un nombre réel

Test un nombre réel

Uest un nombre réel

Initialisation :Affecter 1 àS

Affecter 0 àT

Affecter 0 àK

Traitement :Tant queK

AffecterSàU

Affecter?3U-TàS

AffecterU+?3TàT

AffecterK+1 àK

Fin Tant que

Sortie :AfficherS

AfficherT

3. a.zn+1=un+1+ivn+1=?3un-vn+i?un+?3vn?=??3+i?un+?-1+i?3?vn.

Or az n=??

3+i?(un+ivn)=??3+i?un+?i?3-1?vn=zn+1.

b.apour module|a|=?

3+1=2.

D"oùa=2?

3 2+i2? =2eiπ 6.

Nouvelle-Calédonie45 mars 2015

Corrigédu baccalauréat SA. P. M. E. P.

c.Lea.montre que la suite(zn)est une suite géométrique de raisonaet de premier terme z

0=u0=1.

Par conséquentzn=anpour tout entier natureln.

Puiszn=2neniπ

6. Enfin en prenant la partie réelle et la partie imaginaire : u n=2ncos?nπ 6? etvn=2nsin?nπ6?

Nouvelle-Calédonie55 mars 2015

quotesdbs_dbs50.pdfusesText_50

[PDF] bac 2015 nchallah

[PDF] bac 2015 nice

[PDF] bac 2015 niger

[PDF] bac 2015 notation

[PDF] bac 2015 notes

[PDF] bac 2015 nouvelle caledonie

[PDF] bac 2015 onec

[PDF] bac 2015 onec dz

[PDF] bac 2015 onec resultat

[PDF] bac 2015 option musique

[PDF] bac 2015 oran

[PDF] bac 2015 oraux

[PDF] bac 2015 organisation

[PDF] bac 2015 orientation

[PDF] bac 2015 orleans tours