[PDF] Mesures-et-incertitudes.pdf une incertitude afin de pouvoir





Previous PDF Next PDF



CPGE Brizeux

Exemple 2: Un voltmètre affiche 4816 V



Lincertitude de type B sur une mesure

b) Mesures automatiques (Oscilloscope numérique carte Sysam



Multimètre numérique FI 601X Multimètre numérique FI 601X

12 déc. 2019 Multimètre numérique. FI 601X. Notice d'utilisation. Page 2. Page 3 ... Le bargraphe analogique indique le temps restant avant la fin de la mesure ...



Catalogue METRIX - Test & MesureProduits et accessoires

L'utilisateur maîtrise ainsi les incertitudes de mesure en fonction des Multimètre numérique de terrain TRMS 1316



Estimer une incertitude

❖ Evaluation d'une incertitude-type de résolution lors d'une pesée. Une pesée est faite avec une balance numérique Si le voltmètre est de classe 2 :.



Fluke 21/75 23/77 et 26/79 Série III

Le ProcessMeter Fluke 787 reprend les capacités d'un multimètre numérique et incertitude (nombre de chiffres les moins significatifs) par 10. Ex. : 01%+1 en ...



Séquence n°1 Mesure et Incertitudes

Sans viseur numérique il est difficile de mesurer des longueurs supérieures à 20 m en plein jour. Odomètre : une roue en contact avec le sol tourne. Il faut 



Diaporama 14-06-12

14 juin 2012 Valeur numérique ; unité ; incertitude. Résultat d'une mesure. ⇓. C'est ... • incertitude de fidélité du multimètre. → Documentation technique.



V = = 1098 × 10 V - incertitude élargie : U(M) = k× u = 2

https://pc-terminale-sfnd.pagesperso-orange.fr/pages/AP%20-%20Mesures%20et%20incertitudes%20(correction).pdf



TP0 – Mesures et incertitudes

En déduire par composition des incertitudes



Introduction à la Métrologie électrique

1- Incertitude de mesure d'un multimètre numérique. 2- Loi de propagation des incertitudes. 3- Méthode de calcul préconisée par le COFRAC.



ÉVALUATION DES INCERTITUDES EN T.P.

Il est indispensable que la mesure et l'incertitude absolue aient le même nombre Exemple : sur un multimètre numérique on lit une tension alternative ...



Incertitudes en Sciences de la nature - Laval

chiffres significatifs sur l'affichage numérique de l'appareil). Elle est parfois spécifiée calibration d'un multimètre ou d'une balance électronique).



RAPPELS SUR LES CIRCUITS

Mesurer à l'aide d'un multimètre un courant ou une tension pour le Voltmètre une incertitude de mesure de ±5 % valeur lue ± 2 digit (voir annexe 2).



Plan 1 – caractéristiques communes 2 – Les multimètres

2 – Les multimètres analogiques. 3 – Les multimètres numériques. 4 – l'ohmmètre On mesure une tension de 812345 volt



Mesures-et-incertitudes.pdf

une incertitude afin de pouvoir estimer la qualité de l'expérience . 1.Mesure et erreur de mesure. 1.1.Définitions. • Le mesurande : c'est le nom de la 



Utilisation dun multimètre numérique

Incertitude absolue : Elle est calculée à partir des données du constructeur. Elle dépend du calibre. Page 2. 1) Le Voltmètre (entrée COM et V).



A16 - Instruments de mesures

incertitude sur la précision estimée de la mesure. Cette incertitude est déduite d'une loi multimètre numérique RMS vrai couplage "AC+DC" (entrée AC



TP7 – Mesures électriques.

Utiliser un multimètre numérique et comprendre son fonctionnement. Calculer des incertitudes de mesure. ... Un multimètre permet de mesurer une.



CMetrix_2019 FR.indd

27 juill. 2018 Multimètres numériques oscilloscopes



[PDF] Mesures-et-incertitudespdf - CPGE Brizeux

Mesurer une grandeur n'est pas simplement rechercher la valeur de cette grandeur mais aussi lui associer une incertitude afin de pouvoir estimer la qualité de l 



[PDF] Introduction à la Métrologie électrique - Fabrice Sincère

1- Incertitude de mesure d'un multimètre numérique 2- Loi de propagation des incertitudes 3- Méthode de calcul préconisée par le COFRAC



[PDF] Chapitre 3 : Mesure et Incertitude

Un multimètre est un appareil de mesure possédant plusieurs fonctions Il peut être utilisé : - en ampèremètre pour mesurer l'intensité du courant ; - en 



[PDF] MULTIMÈTRE NUMÉRIQUE - ATEC FRANCE

Cet instrument peut mesurer la tension continue et alternative le courant continu et alternatif la résis- tance la capacité la fréquence les diodes et 



[PDF] Séquence n°1 Mesure et Incertitudes

Calculer la valeur moyenne de l'échantillon et vérifier qu'il correspond à la valeur de la grandeur mesurée par le multimètre Calculer l'écart-type s des 1000 



[PDF] Mesures et incertitudes - mmelzani

?3 Si rien n'est précisé sur les incertitudes écrire un résultat avec le bon nombre de Mesure à l'aide d'un instrument de mesure numérique (voltmètre 



[PDF] Chapitre 2 : Erreurs et Incertitudes de mesure - Technologue pro

comporter la valeur mesurée et les limites de l'erreur possible sur la valeur donnée incertitude n'existe pas pour les appareils numériques Aiguille



Valeur de lincertitude avec multimètre numérique

Bonjour J'ai fait des mesures de courant continu avec un multimètre numérique (en l'occurrence un meterman 37XR) La doc m'indique +/-0 1  



[PDF] Lincertitude de type B sur une mesure - Physique PC au lycée Joffre

b) Mesures automatiques (Oscilloscope numérique carte Sysam Caliens multimètre numérique ) Lorsqu'on effectue des mesures directes avec ces appareils 



[PDF] Multimètre - Résolution et Précision - Moineau Instruments

1/ par la marge d'erreur exprimée en et calculée sur l'échelle pleine du calibre : Si un multimètre a une précision de ± 3 et mesure 3524V sur le 

  • Comment calculer l'incertitude d'un multimètre ?

    I Incertitude et chiffres significatifs.
    Une grandeur physique ne peut être mesurée avec exactitude. Par convention, on pose que l'incertitude sur la mesure est égale à la moitié de la plus petite unité affichée par l'instrument de mesure. L'incertitude d'une mesure dépend donc directement de l'appareil utilisé.
  • Comment calculer l'incertitude d'un voltmètre ?

    Données :

    1Un voltmètre digital est utilisé pour mesurer le voltage qui traverse les deux résistances: résolution = 0,1.10. 2La valeur de la résistance étalon et son incertitude (k=2) sont obtenues à partir du certificat: R S =1,000004 ?,5.10 -6 ohms à 20°C.3L'incertitude sur la stabilité est de 5.10.
  • Comment calculer l'incertitude sur la mesure ?

    Pour calculer l'incertitude lors d'une multiplication ou d'une division, il faut diviser par deux la différence entre la valeur maximale et la valeur minimale pouvant être obtenue par les incertitudes.
  • Règle. L'incertitude de lecture associée à un instrument de mesure analogique correspond à la moitié de la plus petite graduation de l'instrument. L'incertitude absolue d'une règle graduée en millimètres est donc: 1mm2=0,5mm 1 mm 2 = 0 , 5 mm .

Fiche outil PCSI A

Mesures et incertitudes

Introduction :

Mesurer une grandeur physique est une activité fondamentale dans les laboratoires de recherche scientifique et dans

l'industrie. Mesurer une grandeur n'est pas simplement rechercher la valeur de cette grandeur mais aussi lui associer

une incertitude afin de pouvoir estimer la qualité de l'expérience .

1.Mesure et erreur de mesure

1.1.Définitions

• Le mesurande : c'est le nom de la grandeur physique que l'on veut mesurer . Exemple: une résistance R.

• Le mesurage : c'est l'ensemble des opérations permettant de mesurer expérimentalement le mesurande.

• La valeur vraie (M vraie) : c'est la valeur du mesurande que l'on obtiendrait si le mesurage était parfait. Un mesurage

n'étant jamais parfait, cette valeur est toujours inconnue. • La mesure (m) : c'est la valeur donnée par le mesurage. • Le résultat du mesurage (M) : c'est l'expression complète du résultat.

• Erreur de mesure : c'est la différence entre la valeur mesurée et la valeur vrai :ER=(m-Mvraie)

• Erreur relative : Er=∣Mvraie-m∣ Mvraie rend compte de l'exactitude de la mesure et s'exprime le plus souvent en %. Plus Er est petite plus la mesure est exacte.

• Conditions de répétabilité : ces conditions sont remplies lorsque le même opérateur ou le même programme

effectue N mesures exactement dans les mêmes conditions. • La valeur moyenne : m=1

N∑i=1

N miSi on effectue N mesures dans des conditions de répétabilité, c'est le meilleur estimateur de la valeur du mesurande .

• Grandeur d'influence : c'est une grandeur qui a un effet sur le résultat du mesurage (température, pression...).

1.2.Les composantes de l'erreur de mesure

Quand on effectue N mesures dans des conditions de répétabilité, on considère qu'une erreur possède 2 composantes :

une composante aléatoire et une composante systématique. a)La composante aléatoire

Par définition:

(ERa=mi-m). Elle provient des variations temporelles et spatiales non prévisibles de grandeurs d'influence. L'erreur aléatoire peut être réduite en augmentant le nombre d'observations. b)La composante systématique

Par définition

ERS=(m-Mvraie). Il existe de nombreuses sources d'erreurs systématiques. Les sources d'erreurs systématiques . : • L'erreur de justesse des appareils (décalage du zéro, mauvais calibrage...) • La position de l'objet mesuré • Introduction d'un appareil de mesure (en électricité) • L'effet de grandeurs d'influence (température pression...)

L'erreur systématique peut être considérée comme une erreur constante qui affecte chacune des

mesures. 1 Comment détecter et évaluer les erreurs systématiques : • Mesurer la même grandeur avec des instruments ou méthodes différents • Mesurer une grandeur étalon (contrôle de la justesse)

L'erreur systématique ne peut être réduite en augmentant le nombre de mesures mais par l'application

d'une correction. c)Fidélité (ou précision) et justesse (ou exactitude ) On considère toujours que l'on effectue N mesures dans des conditions de répétabilité. On peut écrire : ER=mi-Mvraie=(mi-m)+(m-Mvraie) d'où ER=ERa+ERS.

La fidélité d'un instrument de mesure est son aptitude à donner des indications très voisines lors de la détermination

répétée du même mesurande dans les mêmes conditions.

La justesse d'un instrument de mesure est son aptitude à donner des indications exemptes d'erreur systématique.

On peut illustrer ces notions d'erreurs systématique et aléatoire par le tir dans une cible : Rem : En général on ne connaît pas la cible.

2.Incertitudes de mesure - expression du résultat

2.1.Incertitude type s et incertitude absolue élargie Δ M

Le résultat du mesurage consiste à définir un intervalle dans lequel on pense avoir une probabilité donnée de trouver

la valeur cherchée.

Le résultat d'un mesurage est toujours exprimé sous la forme d'un intervalle des valeurs probables du

mesurande M=m∓ΔM associé à un niveau de confiance P. • ΔMs'appelle l'incertitude absolue élargie associée à un niveau de confiance P. • [m-ΔM;m+ΔM] est l'intervalle de confiance associé au niveau de confiance P:

• s est l' incertitude-type , c'est une incertitude de mesure exprimée sous la forme d'un écart-type .

Relation entre s et Δ M:

ΔM=ks.avec k le facteur d'élargissement associé à un certain niveau de confiance P. Pour un niveau de confiance de 95%, k=2. On travaillera avec un niveau de confiance de 95%.

On utilisera la formule :

ΔM=2s2

2.2.Écriture du résultat

L'écriture du résultat du mesurage doit intégrer l'incertitude, le niveau de confiance et s'écrire avec les

unités appropriées : M=m±ΔM, unité, niveau de confiance. • On définit la précision du résultat du mesurage par : ∣ΔM m∣. Cette précision est souvent exprimée en %. Plus le résultat est petit, plus le mesurage est précis (mais pas forcément exact !). Nombre de chiffres significatifs de m et de ΔM :

Une incertitude est elle-même évaluée de façon approchée, au mieux avec une précision de 10%. Sauf cas tout à fait

exceptionnel où les conditions de mesure sont très contraignantes et très coûteuses : •On écrit ΔM avec un seul chiffre significatif, exceptionnellement avec 2.

•Pour l'estimation de la grandeur mesurée m, on prendra comme dernier chiffre significatif, celui

de même position (au sens numération) que celui de l'incertitude.

Exemples :

• Résultat affiché par la calculatrice: ΔM= 0,0358 unités.→On écrira ΔM= 0,04 unités

• Résultat affiché sur la calculatrice : m = 8.237489 pour ΔM = 0,04 unités →On écrit: M = 8,24 ± 0,04 unités

• Résultat affiché par la calculatrice :m = 8,0026 pour ΔM = 0,04 unitésOn écrit: M = 8,00 ± 0,04 unités

Des zéros peuvent être significatifs !

• On mesure r = 100,251389 Ω avec une incertitude Δr= 0,812349 Ω.→ On écrit R = (100,3 ± 0,8) Ω.

• On mesure r = 132,537kΩ avec une incertitude de 350 Ω. On écrit R = (132,5 ± 0,3) kΩ.

2.3.Incertitude absolue élargie composée

Une grandeur physique Y n'est pas directement mesurable mais telle que : Y=f(X1,X2,...Xk,...XN) . Les Xksont des grandeurs directement mesurables dont le résultat du mesurage est :

Mk=mk±ΔMk.

On suppose : M=m±ΔMle résultat associé à Y.  Cas d'une somme :

Si Y=∑kN

akXk (les ak sont des coefficients constants) alorsm=∑kN akmk et N ak

2ΔMk

2 Cas d'un produit :

mknket ΔM M= nk2(ΔMk mk)2

3.Évaluation de l'incertitude-type : expression de Δ M

L'évaluation des incertitudes par des méthodes statistiques est dite de type A.

Quand la détermination statistique n'est pas possible, on dit que l'évaluation est de type B (cas d'une mesure unique)

3.1.Évaluation de type A

Si on effectue N mesures dans des conditions de répétabilité : • L'écart type expérimental a pour expression :

N-1∑i=1

N (mi-m)2 sexp représente une estimation de la dispersion des valeurs prises par x autour de la valeur moyenne. • L'incertitude-type est alors :

Nsexp.

3

N-1∑i=1N

3.2.Évaluation de type B

l'incertitude-type est évaluée par un jugement scientifique fondé sur toutes les informations disponibles au sujet du

mesurage. Différents cas peuvent se présenter : • Lecture sur une échelle graduée : s=1graduation Pour un niveau de confiance de 95% ΔM=2s=1graduation Exemple : On lit sur une règle graduée tous les mm : L=12,55 cm

L'incertitude absolue élargie est :

ΔL=1

Instrument affichant une tolérance ± α : s=α×valeur déterminée

ΔM=2s=2α×valeurdéterminée

L'incertitude absolue élargie est :

ΔR=

2×2

100×200

R=(200±5)Ωau niveau de confiance 95%.

Appareils numériques

Le constructeur indique pour la précision un pourcentage p de la valeur lue et un nombre N de digits (un digit

correspond au dernier chiffre afiché sur l'écran). s=p×valeurlue+Ndigits

Pour un niveau de confiance de 95%

ΔM=2s=2p×valeurlue+Ndigits

L'incertitude absolue élargie est :ΔI=23

100×5,21+0,01

On écrira le résultat sous la forme :

I=(5,2±0,2)mAau niveau de confiance 95%.

Exemple 2: Un voltmètre affiche 4,816 V, la précision est de (0,5% ± 3 digit)

L'incertitude absolue élargie est :ΔI=20,5

100×4,816+0,003

On écrira le résultat sous la forme : U=(4,82±0,03)Vau niveau de confiance 95%. 4quotesdbs_dbs45.pdfusesText_45
[PDF] incertitude voltmètre

[PDF] formule incertitude relative

[PDF] demontrer que la sociologie est une science

[PDF] critères de scientificité en recherche qualitative

[PDF] critère de scientificité

[PDF] incipit prononciation

[PDF] la sociologie est elle une science pdf

[PDF] incipit theatre

[PDF] excipit de l'assommoir

[PDF] l'assommoir incipit commentaire composé

[PDF] scl-90-r questionnaire pdf

[PDF] scl 90 r cotation

[PDF] scl 90 r version française pdf

[PDF] exemple plan de masse coté dans les trois dimensions

[PDF] échelle scl-90 révisée