[PDF] 1. BIOCHIMIE STRUCTURALE 1.3- LES GLUCIDES 1. Composition





Previous PDF Next PDF



Exercices Complémentaires

Représenter les molécules suivantes selon Cram en conservant la Représenter les molécules suivantes selon Fischer en positionnant le carbone d'indice 1.



Correction QCM 1 Chimie Organique : Réponse A Etape 1

Etape 1 : Passage d'un conformation "chaîse" à une réprésentation CRAM On est en réprésentation de Fisher on voir 4 C asymétriques



STRUCTURE STERIQUE DES MOLECULES.pdf

1.4 Passage de la représentation de Fischer à celle de Cram Deux stéréoisomères sont dits de configuration quand pour passer de l'un à.



Cours de Chimie Organique

Représentation en projective (Cram ou. Coin volant) 3°) Si pour passer du substituant 1ier au ... A partir de la projection de Fischer :.





1. BIOCHIMIE STRUCTURALE 1.3- LES GLUCIDES 1. Composition

Passage de la représentation de Cram à la représentation de Fischer : Les règles pour passer de la représentation de Tollens à celle d'Haworth sont les ...



Activité 12 : Stéréochimie : configurations et conformations I. Les

représenter en perspective de Cram le méthane et Pour passer de la représentation de Cram à celle de Fischer il faut considérer chaque atome de carbone.



LES GLUCIDES

On peut passer d'un ose à n carbones à un ose d'ordre supérieur à (n+1) carbones en ajoutant un carbone porteur d'une fonction alcool secondaire (groupe 



TD CHORG SVTTU S2 2018-2019 version site web université

d) Représentez en projections de Cram et Fischer l'inverse optique de A en indiquant la configuration absolue de ses carbones asymétriques.



Représenter des molécules dans lespace

II-Projection de Fischer. Elle est surtout utilisée quand il y a plus de deux carbones asymétriques car dans ce cas



[PDF] Cours de Chimie Organique

A partir de la projection de Fischer : - Une rotation dans le plan de 180° ne change pas la configuration absolue de C* - Une rotation de 90° dans le plan 



[PDF] Exercices Complémentaires - Serveur UNT-ORI

Représenter les molécules suivantes selon Cram en conservant la Représenter les molécules suivantes selon Fischer en positionnant le carbone d'indice 1



[PDF] STRUCTURE STERIQUE DES MOLECULES - PC-STL

1 2 Représentation de Cram La représentation de Cram d'une molécule permet sa représentation dans l'espace : elle fait apparaître les liaisons en perspective



[PDF] TD-CHORG-SVTTU-S2-2018-2019-version-site-web-universitépdf

d) Représentez en projections de Cram et Fischer l'inverse optique de A en indiquant la configuration absolue de ses carbones asymétriques



Représentation des molécules stéréodescripteurs règles de Cahn

Ils sont représentés ci-dessous en utilisant la représentation de Cram et la projection de Fischer Ces sucres sont encore appelés glycéraldéhydes



[PDF] Chapitre 1 Structure des molécules organiques Nomenclature

Pour réussir ces QCM vous devez connaître : - les conventions qui permettent d'écrire correctement les molécules : la représentation de Cram la perspective 



Introduction à la chimie organique - Chimie en PCSI

Pour donner du relief sur le papier aux dessins des molécules tétraédriques on utilisera la représentation de Cram ci-contre Donald CRAM est un chimiste



[PDF] Biologie cellulaire Exercices et méthodes - Dunod

16 Dans la représentation de Cram la liaison en triangle plein représente une liaison dirigée vers l'avant du plan de la feuille



7 STÉRÉOCHIMIE PARTIE 6/8: PASSAGE DE CRAM A FISCHER?

3 déc 2018 · Pour ceux qui auraient besoin d'encadrement M DOUMBOUYA propose des cours particuliers Durée : 8:55Postée : 3 déc 2018

  • Comment se fait la représentation de Cram ?

    La représentation de Cram des molécules
    Une liaison entre deux atomes situés dans le plan est symbolisée par un trait plein. Une liaison avec un atome qui se trouve en avant du plan est représentée par un trait gras ou par un triangle plein dont la pointe est orientée vers l'atome qui se situe dans le plan.
  • Comment faire la projection de Fischer ?

    La chaîne carbonée principale se situe sur la ligne verticale. L'orientation de la chaîne carbonée est telle que le carbone le plus oxydé est placé dans la moitié supérieure. Les lignes horizontales représentent des liaisons situées au-dessus du plan de projection ou, autrement dit, sont orientées vers le spectateur.
  • Comment passer de Newman à Cram ?

    Re : URGENT de cram a newman
    Pour passer de l'un à l'autre il suffit de faire tourner la molécule autour d'un axe perpendiculaire à la liaison carbone-carbone.
  • Un centre stéréogène est un atome ou groupe d'atomes sur lequel la permutation de deux de ses substituants génère deux stéréoisomères (énantiomères ou diastéréomères). La structure est chirale.
1. BIOCHIMIE STRUCTURALE 1.3- LES GLUCIDES 1. Composition Cours biochimie BTS_ABM1 2019-2020 C. Larcher 1.3.1- Oses - Page 1 / 18 -

1. BIOCHIMIE STRUCTURALE

1.3- LES GLUCIDES

Groupe de composés aux fonctions très importantes :

• Rôle énergétique : glucose (forme d'énergie di rectement utilisa ble par les cellules), amidon

(forme de stockage du glucose chez les végétaux), glycogène (forme de stockage du glucose chez les

animaux)...

• Rôle structural : cellulose (constituant principal de la paroi des cellules végétales, polymère de

glucose), chitine (polymère de N-acétylglucosamine, carapace des arthropodes et paroi des mycètes)...

• Signau x de reconnaissanc e et de commu nication entre les cellules : glycoproté ines membranaires (exemple des antigènes des groupes sanguins A, B, O).

1. Composition élémentaire

C, H, O

2. Fonctions chimiques

Groupe carbonyle : fonctions aldéhyde ou cétone

Groupe hydroxyle : fonction alcool

3. Classification des glucides

Également appelés monosaccharides ou sucres simples

Non hydrolysables

Molécules comportant de 3 à 7 atomes de carbone

Formule brute : C

n H 2n O n : C n (H 2 O) n Cette formule brute explique le terme utilisé en anglais d'hydrate de carbone.

Polyol qui porte au moins 2 fonctions alcools dont l'une au moins est une fonction alcool primaire, et une

groupement carbonyle réductrice, soit : • aldéhyde (-CHO) dans ce cas l'ose est un aldose. • cétone (>C=O) dans ce cas l'ose est un cétose. L'ose le plus répandu est un aldohexose en C6 : le glucose.

Formule brute : C

6 H 12 O 6

Glucides Non hydrolysables = oses = molécules de base Hydrolysables = osides Condensation d'un ou de plusieurs oses = holosides Condensation d'oses et de consti tuants non glucidiques = hétérosides

Cours biochimie BTS_ABM1 2019-2020 C. Larcher 1.3.1- Oses - Page 2 / 18 -

1.3.1- LES OSES

1. Formule développée et isomérie ............................................................................................................... 3

1.1. Isomères de constitution (de fonction) ......................................................................................... 3

1.2. Stéréoisomères ............................................................................................................................. 3

1.2.1. Nombre de stéréoisomères ............................................................................................... 3

1.2.2. Représentation de Fischer ................................................................................................ 3

1.2.3. Diversité des stéréoisomères ............................................................................................ 4

1.2.4. Pouvoir rotatoire .............................................................................................................. 5

2. Structures cyclisées ................................................................................................................................... 6

2.1. Mise en évidence de l'existence de la structure cyclisée du glucose ........................................... 6

2.1.1. Réaction au réactif de Schiff ............................................................................................ 6

2.1.2. Réaction d'hémiacétalisation en présence d'un alcool .................................................... 6

2.1.3. Explication possible aux deux premières expériences ..................................................... 6

2.1.4. Phénomène de mutarotation ............................................................................................. 6

2.1.5. Conclusion ....................................................................................................................... 7

2.2. Représentation de Tollens ............................................................................................................ 7

2.3. Représentation de Haworth .......................................................................................................... 8

3. Propriétés des oses et du glucose .............................................................................................................. 9

3.1. Propriétés physiques ..................................................................................................................... 9

3.1.1. Propriétés optiques ........................................................................................................... 9

3.1.2. Propriétés polaires ............................................................................................................ 9

3.1.3. Thermodégradable ........................................................................................................... 9

3.1.4. Goût sucré ........................................................................................................................ 9

3.2. Propriétés chimiques .................................................................................................................. 10

3.2.1. Stabilité .......................................................................................................................... 10

3.2.2. Réactions d'oxydation des oses ..................................................................................... 10

3.2.3. Réaction de réduction des oses ...................................................................................... 12

3.2.4. Estérification .................................................................................................................. 13

3.2.5. Déshydratation à chaud .................................................................................................. 13

3.2.6. Épimérisation ................................................................................................................. 14

3.2.7. Interconversion des oses ................................................................................................ 14

4. Diversité des oses ................................................................................................................................... 14

4.1. Classification des oses ................................................................................................................ 14

4.1.1. En fonction du nombre de carbones .............................................................................. 14

4.1.2. En fonction de la nature de la fonction réductrice ......................................................... 14

4.1.3. Convention de numérotation .......................................................................................... 14

4.2. Principaux oses ........................................................................................................................... 15

4.2.1. D-ribose ......................................................................................................................... 15

4.2.2. Hexoses .......................................................................................................................... 15

4.3. Dérivés d'oses ............................................................................................................................ 16

4.3.1. Désoxyoses .................................................................................................................... 16

4.3.2. Acides (glyc)uroniques .................................................................................................. 16

4.3.3. (Glyc)osamines ou (hex)osamines : dérivés aminés d'oses ........................................... 16

4.3.4. Polyols ou glycitols : glycérol, sorbitol, xylitol ............................................................. 16

4.3.5. Dérivés autres : acide ascorbique ................................................................................... 16

Cours biochimie BTS_ABM1 2019-2020 C. Larcher 1.3.1- Oses - Page 3 / 18 -

1. Formule développée et isomérie

1.1. Isomères de constitution (de fonction)

Des isomères de consti tution sont des molé cules de même formule brute ma is de formules

développées différentes. On distingue les isomères de chaîne, de position et de fonction.

Les isomères de fonction possèdent des groupes fonctionnels différents, donc des propriétés

physiques et chimiques différentes. Les oses les plus simples ont trois atomes de carbone : glycéraldéhyde et dihydroxyacétone • Aldose : glucide avec fonction aldéhydique en bout de chaîne (C1) • Cétose : glucide avec fonction cétone à l'intérieur de la chaîne (C2). D(+)-glycéraldéhyde L(-)-glycéraldéhyde Dihydroxyacétone Figure 1 : distinction entre un aldose et un cétose (exemple avec C3)

On remarque que le C

2 du glyc éraldéhyde porte 4 substituants différent s Þ C as ymétrique Þ

propriétés optiques (pouvoir rotatoire) : existence de 2 isomères optiques images l'un de l'autre dans un

miroir : on parle d'énantiomères (D-glycéraldéhyde et L-glycéraldéhyde).

1.2. Stéréoisomères

1.2.1. Nombre de stéréoisomères

Le glucose a pour formule développée :

HOH 2 C - C

HOH - C

HOH - C

HOH - C

HOH - CH = O

Il possède 4 carbones asymétriques (C

). Il existe donc 2 4 = 16 stéréoisomères différents.

Les stéréoisomè res sont des isomères de configuration, c'est-à-dire des molé cules de

constitution identique mais dont l'organisation spatiale des atomes est différente.

Pour visualiser les stéréoisomères, on utilise la représentation ou projection de Fischer.

Rappel : représentation de Cram

• C dans le plan de la feuille. • Liaison en pointillés : liaison dirigée vers l'arrière. • Liaison en trait épais : liaison dirigée vers l'avant.

1.2.2. Représentation de Fischer

La projection de Fischer est surtout utilisée pour représenter les sucres et les acides aminés. Elle fut inventée par Emil Fischer. Passage de la représentation de Cram à la représentation de Fischer : • la chaîne carbonée est orientée avec son groupement le plus oxydé dirigé vers le haut • les traits verticaux symbolisent des liaisons dirigées vers l'arrière • les traits horizontaux symbolisent des liaisons dirigées vers l'avant C OH CHOH CH 2 OH CH 2 OH C CH 2 OH O C OH CH 2 OH OHH C OH CH 2 OH HHO

Emil Fischer

1852-1919

Prix Nobel de

Chimie 1902

Cours biochimie BTS_ABM1 2019-2020 C. Larcher 1.3.1- Oses - Page 4 / 18 - On ne représente pas les atomes de carbone, ils sont situés à l'intersection des segments

horizontaux et du trait vertical. La représentation de Fischer est souvent allégée en ne marquant la

position des groupements OH que par des tirets.

Par convention, le D-glycéraldéhyde est l'énantiomère qui a le groupement OH positionné à

droite dans la représentation de Fischer. Cette représentation permet de différencier facilement les énantiomères chiraux 1

L ou D.

Figure 2 : représentations de Cram et de Fischer du D-glucose On clas se les isomères de configurat ion en trois grands groupes : les énantiomères, les diastéréoisomères et les épimères.

1.2.3. Diversité des stéréoisomères

a. Énantiomères Un énantiomère est un isomère de configuration non superposable à son homologue après symétrie dans un miroir.

Tous les ose s possèdent un pouvoir rotatoire

2 du fai t de la présence d'un carbone asymétrique, les oses sont dits chiraux.

Deux énantiomè res ont les mêmes propriétés physiques et chi miques à l'except ion

d'une seule : leur pouvoir rotatoire opposé. Dans la forme D, le groupement alcool (-OH) porté par le carbone n - 1 est à droite (en représentation de Fischer) comme le (+)-glycéraldéhyde. Dans la forme L, le groupement alcool (-OH) porté par le carbone n - 1 est à gauche (en représentation de Fischer) comme le (-)-glycéraldéhyde. Figure 3 : énantiomères du glucose ; forme D-glucose = forme naturelle.

Les oses de la série D sont naturels.

Un méla nge équimolaire de 2 énanti omères est appelé mélange racém ique. Il se

caractérise par l'absence d'un pouvoir rotatoire car les effets d'un des énantiomères sur la

déviation du plan de la lumière polarisée sont annulés par ceux du second. 1 Molécule chirale : molécule qui ne peut pas se superposer à son image dans un miroir 2

Pouvoir rotatoire : se dit du pouvoir qu'ont les substances asymétriques de faire tourner le plan de polarisation de la lumière.

Cours biochimie BTS_ABM1 2019-2020 C. Larcher 1.3.1- Oses - Page 5 / 18 - b. Diastéréoisomères

Les diastéréoisomères sont les stéréoisomères qui ne sont pas des énantiomères.

c. Epimères Deux épimères ne diffèrent entre eux que par la configuration absolue d'un seul carbone asymétrique, comme par exemple entre le D-mannose et le D-glucose ou encore entre le

D-glucose et le D-galactose.

1.2.4. Pouvoir rotatoire

En soluti on, les formes énantiom ères d'une molécule portant un c arbone asymétrique

présentent des propriétés optiques différentes. Chaque énantiomère dévie le plan de polarisation

d'une onde monochromatique polarisée (angle égal en valeur absolue mais de signe opposé).

Cette propriété est caractérisée par le pouvoir rotatoire spécifique qui répond à la loi de Biot :

í µ : angle de rotation observée en degré (°). : pouvoir rotatoire spécifique de la substance, constant pour une température et une longueur d'onde données (en °·g -1

·dm

2 â„“ : longueur de la cellule contenant la substance, traversée par la lumière (en dm) í µ : concentration massique de la substance (en g·mL -1

D-glucose L-glucose

ENANTIOMÈRES

Épimère (en C2) du D-glucose Épimère (en C4) du D-glucose

D-mannose D-galactose

DIASTEREOISOMERES

Figure 4 : illustration de la notion d'énantiomères, d'épimères et de diastéréoisomères

Voir planche filiation des oses

Remarque : en général, le suffixe des aldoses est " -ose » alors que celui des cétoses est " -ulose » (sauf exceptions : fructose,

sorbose,...). OH CH 2 OH OH CH 2 OH OH CH 2 OH OH CH 2 OH Cours biochimie BTS_ABM1 2019-2020 C. Larcher 1.3.1- Oses - Page 6 / 18 -

2. Structures cyclisées

2.1. Mise en évidence de l'existence de la structure cyclisée du glucose

2.1.1. Réaction au réactif de Schiff

Le glucose possède une fonction aldéhydique. En présence du réactif de Schiff, on devrait

obtenir une coloration rouge que l'on n'obtient pas !

2.1.2. Réaction d'hémiacétalisation en présence d'un alcool

Une molécule avec une fonction aldéhyde ou cétone est capable de réagir successivement avec deux molécules d'alcool (ici le méthanol) suivant les réactions suivantes :

En présence d'HCl anhydre :

Aldéhyde + méthanol ® hémiacétal Hémiacétal + méthanol ® acétal + eau

R-CHO + CH

3

OH ®

Aldéhyde + méthanol Hémiacétal

+ CH 3

OH ®

+ H 2 O

Hémiacétal méthanol Acétal

Figure 5 : réaction d'hémiacétalisation entre un aldéhyde et un alcool Dans les mêmes conditions, le glucose ne réagit qu'avec une seule molécule de méthanol !

2.1.3. Explication possible aux deux premières expériences

Dans le glucose, il s'est produit une réaction entre la fonction a ldéhydique et un des

groupements OH (= réaction d'hémiacétalisation intramoléculaire). Ceci expliquerait pourquoi le

glucose n'est pas capable de colorer le réactif de Schiff et pourquoi il ne peut réagir qu'avec une

seule molécule de méthanol (puisqu'il aurait déjà réagi avec une fonction alcool pour se retrouver

sous la forme d'un hémiacétal).

2.1.4. Phénomène de mutarotation

La cristallisation du D-glucose dans des solvants différents (éthanol, pyrimidine) conduit non

pas à un seul produit mais à 2 produits dont les pouvoirs rotatoires sont différents. Ces 2 formes ont

été qualifiées de forme á (+ 112°), cristallisation dans l'éthanol (conditions !), et de forme â

(+ 19°), cristallisation dans la pyrimidine (conditions "). Ces deux formes sont dites anomères.

On observe pour chacune des formes mises en solution aqueuse, en fonction du temps, une

évolution du pouvoir rotatoire qui atteint pour chacune des formes la même valeur + 52,5°. Cette

valeur correspond à une proportion d'environ 1/3 de l'anomère a et 2/3 de l'anomère b. RC OH H OCH 3 RC OH H OCH 3 RC OCH 3 H OCH 3

Solution de D-glucose Cristallisation dans conditions ! Þ obtention du composé 1, a = + 112° FORME a Cristallisation dans conditions " Þ obtention du composé 2, a = + 19° FORME b

Cours biochimie BTS_ABM1 2019-2020 C. Larcher 1.3.1- Oses - Page 7 / 18 - L'établissement de l'équilibre ci-dessus à partir de l'un ou l'autre des glucopyranoses s'appelle la mutarotation du glucose :

D-a-glucose pur

Équilibre :

1/3 forme a et 2/3 forme b

D-b-glucose pur

112° 52,5° 19°

2.1.5. Conclusion

Seule explication possible à ce phénomène appelé mutarotation : il se produit un changement

de conformation entre les deux formes en solution. En fait, la mutarotation correspond au passage

d'une forme a nomérique à une autre par ouverture du glucose s ous forme hémiacé talique et

recyclisation (b-D-glucose Û glucose linéaire Û a-D-glucose).

2.2. Représentation de Tollens

Pour explique r ces différentes expéri ences, Tollens proposa une structure où le carbone 1 du

glucose devient asymétrique après l'apparition d'un cycle formé suite à l'hémiacétalisation de la fonction

aldéhydique par un groupement hydroxyle (du carbone 4 ou du carbone 5) créant un pont oxydique.

OOHO O Cours biochimie BTS_ABM1 2019-2020 C. Larcher 1.3.1- Oses - Page 8 / 18 - + H 2 O - H 2 O

D-glucose

Forme aldéhydique libre

Hydrate

d'aldéhyde

Hémiacétal

Forme glucopyranose (pont oxydique en

C1 et C5)

Figure 6 : Passage du D-glucose de la forme linéaire à la forme glucopyranose * Pour les aldoses : • Dans le cas d'un pont oxydique entre C1 et C5, on obtient un cycl e he xagonal comportant 5 carbones et un atome d'oxygène ; c'est un noyau pyrane. • Dans le cas d'un pont oxydi que entre C1 et C4, on obtient un cyc le pentagonal comportant 4 carbones et un atome d'oxygène ; c'est un noyau furane. * Pour les cétoses : • Dans le cas d'un pont oxydique entre C2 et C6, on obtient un noyau pyrane. • Dans le cas d'un pont oxydique entre C2 et C5, on obtient un noyau furane.

Noyau pyrane Noyau furane

Figure 7 : représentation des noyaux pyrane et furane Dans la forme cyclisée apparaît donc un nouveau carbone asymétrique en C1 dans le cas des

aldoses et en C2 dans le cas des cétoses. En fonction de la position de l'hydroxyle porté par ce

carbone, on distingue les formes anomériques a et b.

Dans la représentation de Tollens, on représente l'anomère a en plaçant l'hydroxyle en C1 du

même côté que l'hydroxyle qui détermine la série de l'ose, c'est-à-dire du même côté que le pont

oxydique. Les oses étant de la série D, les isomères a sont ceux dont l'hydroxyle porté par le C1

(aldose) ou C2 (cétose) est situé à droite, alors les isomères b sont représentés avec cet hydroxyle à

gauche.

2.3. Représentation de Haworth

Cette représentation est la plus employée actuellement.

Le cycle est perpendiculaire au plan de la feuille ; les liaisons en trait fin sont derrière le plan

de la feuille ; celles en trait épais sont en avant de ce plan.

Les règles pour passer de la représentation de Tollens à celle d'Haworth sont les suivantes :

CH 2 OH C OH OH CH 2 OH C OHH OH CH 2 OH C OHH O OO Cours biochimie BTS_ABM1 2019-2020 C. Larcher 1.3.1- Oses - Page 9 / 18 - Représentation de Tollens Représentation d'Haworth

Règle

n°1 Hydroxyles à droite de la chaîne carbonée Hydroxyles en bas en dessous du plan du cyclequotesdbs_dbs29.pdfusesText_35
[PDF] chimie organique stéréochimie exercices corrigés pdf

[PDF] projection de newman pdf

[PDF] client leger hp t520

[PDF] hp thin client t520

[PDF] hp thin client default password

[PDF] serveur client léger windows

[PDF] hp device manager

[PDF] mot de passe administrateur hp t620

[PDF] client leger windows

[PDF] mettre 2 ordinateurs en partage wifi pdf

[PDF] comment partager une imprimante sous windows 7 pdf

[PDF] mettre 2 ordinateurs en partage windows 7 pdf

[PDF] configuration d'un routeur en pdf

[PDF] comment partager des fichiers entre 2 pc pdf

[PDF] cisco installer et configurer un routeur pdf