[PDF] [PDF] Calcul Algébrique 1 – La somme des n





Previous PDF Next PDF



1 Montrer quune somme est directe

Quand on ne sait pas ! Soit p ? 2 et F1···



LE SYMBOLE DE SOMMATION

Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes. Ce symbole est généralement accompagné d'un indice que l'on 



Comment se faire rembourser une somme en sollicitant une société

9 janv. 2020 En cas d'échec le recours au tribunal doit être envisagé. Une société de recouvrement est une entreprise qui se charge de réclamer le ...



les entiers naturels qui sont somme de deux carres

Est-ce que tout nombre entier peut s'écrire sous la forme d'une somme de deux carrés ? Quels sont les nombres n tels que n = a2 + b2 avec a et b des entiers 



Calculer lordre de grandeur dune somme

On peut savoir quel sera à peu près le résultat d'une somme en remplaçant chacun des nombres de la somme par un nombre qui rend facile le calcul mental.



Variables aléatoires finies

Mutatis mutandis on a le mme résultat pour une série statistique. 4 Variance d'une somme. Cette partie abstraite va nous permettre d'arriver rapidement `a 



Décombre dune première S – Cosinus et sinus dune somme et d

Cosinus et sinus d'une somme. Dans tout ce qui suit ? et ? sont deux réels quelconques. Dans ce premier paragraphe



Somme de sous-espaces vectoriels. Espaces vectoriels de

Somme de sous-espaces vectoriels. Espaces vectoriels de dimension finie. 3. Dans ce chapitre E désigne un K-espace vectoriel non réduit au singleton {0E}.



SOMME DE DEUX CARRÉS - Lycée Marseilleveyre

SOMME DE DEUX CARRÉS. Nous avons eu la chance de participer à un stage de mathématiques avec notre classe notre professeur ainsi que des étudiants qui nous 



Changer lordre des termes dune somme

17 avr. 2019 d'une somme. 13 ne change pas le résultat d'une addition si on change l'ordre des nombres qu'on ajoute. » Expliciter la commutativité dans ...



[PDF] Les symboles somme et produit - Lycée dAdultes

27 fév 2017 · Définition 2 : Lorsqu'on somme sur deux indices on parle de somme double Soit (aij) une suite double de nombres réels ou complexes et soit 



[PDF] Sommes produits récurrence - Normale Sup

18 sept 2010 · La somme est l'opération la plus élémentaire qui soit en mathématiques vous l'utilisez d'aileurs fréquemment depuis une bonne dizaine 



[PDF] sommespdf - Pascal Ortiz

Somme 42 94 156 228 310 Dé nition formelle d'une somme Soit une suite (xk)k de nombres réels ou complexes dé nie entre deux indices xés i et j tels



[PDF] Sommes et produits

Après un changement d'indice le nombre de termes dans la somme doit rester inchangé ! Exemples : E 1 p X k=2



[PDF] Calcul Algébrique

1 – La somme des n premiers entiers vaut n(n + 1)/2 Voici maintenant une explication combinatoire Autour d'une table n+1 personnes sont assises et s'apprêtent 



[PDF] Sommes et produits de nombres - Mathématiques PTSI

Généralités et propríetés des sommes Quelques sommes usuelles ³ somme des n premiers entiers naturels et suites arithmétiques : Proposition



[PDF] LE SYMBOLE DE SOMMATION

Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes Ce symbole est généralement accompagné d'un indice que l'on 



[PDF] Chapitre 1 - Calculs de sommes

On cherche une formule explicite (ou encore une formule close) pour la somme Sn en fonction de n Nous allons l'établir de plusieurs façons Première méthode : 



[PDF] Chapitre IV : Calculs algébriques I La somme ? et le produit ?

Exemple 12 : Calculer la somme des nombres impairs de 1 à 99 en utilisant une suite arithmétique Soient (un)n?N une suite de réels ou de complexes et q ? K



[PDF] CH IV : Récurrence calculs de sommes et produits - Arnaud Jobin

2) Le calcul de somme double se résume alors à un calcul de sommes simples Exercice Soient (ai)i?N* et (bi)i?N* deux suites réelles Montrer 

:
Université Joseph Fourier, Grenoble Maths en Ligne

Calcul Algébrique

Eric Dumas, Emmanuel Peyre, Bernard Ycart

Ce chapitre est consacré à la manipulation de formules algébriques, constituées de variables formelles, de réels ou de complexes. L"objectif est essentiellement pratique : " savoir calculer ». La seule nouveauté réside dans la manipulation de formules avec indices, utilisant les symboles?(somme) et?(produit). Pour le reste, vous aurez simplement à réviser votre cours de terminale sur les nombres complexes.

Table des matières

1 Cours 1

1.1 Sommes et produits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Trois formules à connaître . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Formes trigonométrique et exponentielle . . . . . . . . . . . . . . . . . 11

1.5 Géométrie du plan complexe . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Entraînement 16

2.1 Vrai ou faux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 QCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Corrigé du devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Compléments 37

3.1 Qu"on m"aille quérir M. Viète . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 L"homme qui savait tout... ou pas . . . . . . . . . . . . . . . . . . . . 38

3.3 Triangle de Pascal, binôme de Newton et poésie védique . . . . . . . . 39

3.4 Les formules de Ramanujan . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Le Rapido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Si non è vero, è bene trovato . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 La marquise de Tencin . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Equations résolubles par radicaux . . . . . . . . . . . . . . . . . . . . . 45

27 septembre 2014

Maths en LigneCalcul AlgébriqueUJF Grenoble1 Cours

1.1 Sommes et produits

Nous commençons par les sommes.

L"écriture

5? k=02k se lit "somme pourkallant de zéro à cinq de deux puissancek». C"est une notation abrégée pour : 2

0+ 21+ 22+ 23+ 24+ 25.

La lettrekest l"indice de sommation. On la remplace successivement par toutes les valeurs entières comprises entre les deuxbornes, qui sont0et5dans notre exemple. La première borne, celle qui est écrite au-dessous du signe somme, sera toujours inférieure ou égale à celle qui est au-dessus. Les bornes peuvent elles-mêmes être des variables, mais elles sont nécessairement différentes de l"indice de sommation. Par exemple, pour tout entier natureln:n? k=02k désigne la somme 2

0+ 21+ 22+ 23+···+ 2n-1+ 2n.

Rappelons que, par convention,a0= 1pour tout nombre réela. Prenez l"habitude d"écrire les sommes sous forme développée quitte à introduire des points de suspension entre les premiers termes et les derniers. Voici quelques exemples d"égalités illustrant la manipulation des indices et des bornes. Nous donnons sous chaque exemple une

écriture sous forme développée.

n k=12k=n-1? h=02h+1 2

1+···+ 2n= 20+1+···+ 2n-1+1.

L"indice de sommation peut être remplacé par n"importe quel autre : on dit que c"est unevariable muette. n k=02k+n h=12n+h=2n? k=02k (2

0+···+ 2n) + (2n+1+···+ 22n) = 20+···+ 22n.

Observez que la borne peut être une des variables de la quantité à sommer. n k=02n= (n+ 1)2n 2 n+···+ 2n= (n+ 1)2n. 1

Maths en LigneCalcul AlgébriqueUJF GrenobleDans cet exemple la quantité à sommer ne dépend pas de l"indice de sommation : celle-

ci a pour seul effet de compter les termes. Attention, pourm6n, il y an-m+ 1 termes dans la somme demàn. n k=01 h=02k+h=1 h=0n k=02k+h (2

0+ 21) +···+ (2n+ 2n+1) = (20+···+ 2n) + (21+···+ 2n+1).

Une double somme est une somme de sommes, et on peut toujours intervertir les deux. Voici un enchaînement d"égalités, montrant que la somme des puissances de2de20 jusqu"à2nvaut(2n+1-1)(c"est un cas particulier d"une formule à connaître que nous verrons plus loin). Pour chaque ligne de calcul, nous donnons à droite l"écriture sous forme développée. On rappelle que20= 1. n k=02k= 2? n? k=02k? n? k=02k?= 2(2

0+···+ 2n)-(20+···+ 2n)

n? k=02k+1? n? k=02k?= (2

1+···+ 2n+1)-(20+···+ 2n)

n+1? h=12h? n? k=02k?= (2

1+···+ 2n+1)-(20+···+ 2n)

= 2 n+1-20= 2 n+1-1. Ce que nous venons de voir pour les sommes s"applique aussi aux produits. Le produit des entiers de1ànintervient dans de nombreuses formules. C"est lafactorielle den. Elle se note "n!». n! =n k=1k= 1 2 3···(n-2) (n-1)n . Il est souvent utile d"étendre la définition de la factorielle en convenant que0! = 1. Voici les premières valeurs.n0 1 2 3 4 5 6 7 8 9 10 n!1 1 2 6 24 120 720 5040 40320 362880 3628800 Sinest un entier positif, unn-upletdésigne une liste ordonnée denobjets. On appellepermutation des nombres de1ànunn-uplet d"entiers(u1,...,un)dans lequel chaque entier entre1etnapparaît une et une seule fois. Par exemple(5,3,2,4,1)est une permutation des nombres de1à5. Théorème 1.Le nombre de permutations des nombres de1ànestn!. Démonstration: On montre le théorème par récurrence surn. 2

Maths en LigneCalcul AlgébriqueUJF GrenobleSin= 1, la seule permutation des entiers de1à1est(1).

On suppose donc que le résultat est vrai pour l"entiern. Montrons-le pour l"entier n+1. Soitkun entier tel que16k6n+1et comptons le nombreAkde permutations (u1,...,un+1) telles queuk=n+ 1. À une telle permutation, associons len-uplet : (u1,...,uk-1,uk+1,...,un+1). C"est une permutation des nombres de1àn. Inversement étant donnée une permutation (v1,...,vn)des entiers de1àn, alors (v1,...,vk-1,n+ 1,vk+1,...,vn) est une permutation des entiers de1àn+ 1dont lek-ième terme estn+ 1. En appliquant l"hypothèse de récurrence, on obtient queAk=n!. Donc le nombre total de permutations des nombres de1àn+ 1est : n+1? k=1A k=n+1? k=1n! = (n+ 1)n! = (n+ 1)!, ce qui montre le résultat pourn+ 1. Pour ordonnernobjets, il faut associer à chacun un nombre entre1etnde sorte que chaque nombre renvoie à un objet et un seul. Il y a autant de manières de le faire que de permutations desnpremiers entiers :n!. Au tiercé, il y a5! = 120manières d"ordonner les 5 premiers chevaux. Une seule donne l"ordre d"arrivée, soit le quinté dans l"ordre, et il y a119quintés dans le désordre. Lenombre de combinaisonsdekobjets parminest le nombre de manières de choisir kobjets parmin, sans distinguer leur ordre. ?n k? =n!k!(n-k)!.(1)

La notation

?n k?que nous utilisons ici, de préférence à l"ancienne notationCkn, est conforme aux programmes en vigueur et à l"usage international. Nous conseillons de la lire " denchoisirk». La formule (1) correspond au raisonnement suivant. Pour choisirkobjets, on peut se donner une permutation desnobjets, et décider d"en retenir leskpremiers. Parmi les permutations, toutes celles qui auront en commun leurskpremiers nombres conduiront au même choix. Il faut donc diviser par le nombre de permutations deskobjets choisis, et par le nombre de permutations desn-kobjets qui ne l"ont pas été. Observez que (1) ne change pas si on remplacekparn-k. ?n k? =?n n-k? 3

Maths en LigneCalcul AlgébriqueUJF GrenobleChoisirkobjets parmin(ceux que l"on garde) revient à en choisirn-k(ceux que l"on

laisse).

Voici une autre expression de?n

k?. ?n k? =1k!k-1? h=0(n-h) =n(n-1)···(n-k+ 1)1 2···k.(2) Notez qu"il y akfacteurs au numérateur, comme au dénominateur. On obtient cette formule en simplifiant le quotientn!/(n-k)!dans (1). On peut aussi raisonner comme suit. Il y anfaçons de choisir le premier objet, puisn-1de choisir le second (puisqu"un objet a déjà été choisi), etc. Pour choisir le k-ième objet, il resten-(k-1)possibilités. Ceci correspond au numérateur de (2). Cette manière de procéder retourne une liste ordonnée. Il faut donc diviser par le nombre d"ordres possibles deskobjets choisis, qui estk!. Observez les relations suivantes, faciles à déduire de (1) ou (2) et de la définition de la factorielle. ?n k? =nk n-1 k-1? =n-k+ 1k n k-1?

Pour calculer

?n k?en pratique, on n"utilise ni (1) ni (2). Le calcul récursif par la formule dutriangle de Pascal(connue des indiens, des chinois et des arabes bien avant Pascal) est beaucoup plus rapide. ?n k? =?n-1 k? +?n-1 k-1? .(3) Nous conseillons au lecteur de démontrer cette formule à partir des expressions (1) et (2). Voici la justification combinatoire. Supposons que parmi lesnobjets dontk doivent être choisis, l"un d"entre eux soit distingué (disons qu"il est rouge). Parmi les choix possibles dekobjets, certains ne contiennent pas l"objet rouge, d"autres le contiennent. Les premiers sont au nombre de?n-1 k?, car leskobjets sont choisis parmi lesn-1différents de l"objet rouge. Les choix contenant l"objet rouge sont au nombre de?n-1 k-1?car l"objet rouge ayant été retenu, il restek-1objets à choisir parmi lesn-1 autres. Voici, disposées en triangle, les valeurs de?n k?pournallant de0à6. n\k0 1 2 3 4 5 6 01 11 1

21 2 1

31 3 3 1

41 4 6 4 1

51 5 10 10 5 1

61 6 15 20 15 6 1

4

Maths en LigneCalcul AlgébriqueUJF GrenobleChaque valeur est la somme de celle qui est au-dessus, et de celle qui est à gauche de

celle qui est au-dessus. S"il n"est pas indispensable de connaître ce tableau par coeur, il est souvent utile de savoir le réécrire rapidement.

1.2 Trois formules à connaître

Les formules données par les trois théorèmes qui suivent vous seront souvent utiles. Théorème 2.Pour tout entiern>1, la somme desnpremiers entiers vaut n(n+ 1)/2. n? k=1k= 1 + 2 +···+n=n(n+ 1)2 .(4) Démonstration: Nous donnons d"abord la démonstration par récurrence. Nous verrons ensuite une justification géométrique et une justification combinatoire. L"hypothèse de récurrence est : H(n)n k=1k=n(n+ 1)2

Pourn= 1:1?

k=1k= 1 =1(1 + 1)2

Supposons maintenant queH(n)est vraie. Ecrivons :

n+1? k=1k=? n? k=1k? + (n+ 1).

En appliquantH(n), on obtient :

n? k=1k? + (n+ 1) =n(n+ 1)2 + (n+ 1).

Le membre de droite s"écrit :

n(n+ 1)2 + (n+ 1) =(n+ 1)(n+ 2)2

Nous avons donc démontré que :

n+1? k=1k=(n+ 1)(n+ 2)2 c"est-à-dire queH(n+ 1)est vraie. Voici maintenant une justification géométrique. Considérons un rectangle dont la largeur et la hauteur valent respectivementn+ 1etnunités (figure 1). Ce rectangle 5 Maths en LigneCalcul AlgébriqueUJF GrenobleFigure1 - La somme desnpremiers entiers vautn(n+ 1)/2.

peut être découpé en deux moitiés superposables. Chacune est formée de1+2+···+n

carrés de côté unité, et couvre une surface égale à la surface du rectangle divisée par

2, soitn(n+ 1)/2.

Voici maintenant une explication combinatoire. Autour d"une tablen+1personnes sont assises et s"apprêtent à trinquer. Combien de bruits de verre entendra-t-on? Il y a deux manières de compter. La première consiste à prendre les personnes dans l"ordre : la première doit trinquer avec lesnautres. La seconde, qui a déjà trinqué avec la première, doit encore trinquer avecn-1autres. Ainsi de suite jusqu"à lan-ième personne, qui ayant déjà trinqué avec lesn-1autres n"aura plus que lan-ième avec qui trinquer. On entendra doncn+(n-1)+···+1bruits de verre. La seconde manière de compter consiste à remarquer que le nombre de bruits de verre est égal au nombre de combinaisons de 2 personnes parmin+ 1: ?n+ 1 2? =n(n+ 1)2 Les deux formules suivantes portent sur deux variablesaetbque vous pouvez voir dans un premier temps comme deux réels. Ces formules sont aussi valables pour des nombres complexes, et plus généralement pour des objets quelconques que l"on peut ajouter et multiplier de façon commutative (par exemple des polynômes ou des fonctions deR dansR). La première généralise l"identité remarquablea2-b2= (a+b)(a-b).

Théorème 3.Pour tout entiern,

a n+1-bn+1= (a-b)? n? k=0an-kbk? = (a-b)(an+an-1b+···+abn-1+bn).(5) 6 Maths en LigneCalcul AlgébriqueUJF Grenoble(Rappelons la conventiona0=b0= 1.) Démonstration: La démonstration se fait par récurrence. L"affirmation est vraie pour n= 0puisque : 0? k=0a0b0= 1.

Supposons le résultat vrai pourn.

(a-b)? n+1? k=0an+1-kbk? = (a-b)?? n? k=0an+1-kbk? +bn+1? = (a-b)? a? n? k=0an-kbk? +bn+1? =a(a-b)? n? k=0an-kbk? + (a-b)bn+1 =a(an+1-bn+1) + (a-b)bn+1 =an+2-bn+2

L"hypothèse de récurrence a été utilisée pour obtenir l"avant-dernière égalité. Le résultat

est vrai pourn+ 1, donc pour toutn. Des cas particuliers du théorème 3 reviennent souvent dans les calculs. Nous avons déjà rencontré le casa= 2,b= 1. Vous pouvez retenir le suivant : (1-x)? n? k=0xk? = (1-x)(1 +x+x2+···+xn) = 1-xn+1.

Plus généralement, on a la relation :

Proposition 1(Somme d"une série géométrique).Soitxun nombre réel différent de

0et de1et soientpetqdes entiers relatifs tels quep6q. Alors :

q k=pxk=xp-xq+11-x·

Démonstration: Il suffit de remarquer que :

(1-x)( (q? k=pxk) =q k=pxk-q+1? k=p+1xk=xp-xq+1. Une autre formule à connaître est celle dubinôme de Newton, qui généralise(a+b)2= a

2+ 2ab+b2.

7 Maths en LigneCalcul AlgébriqueUJF GrenobleThéorème 4.Pour tout entiern>1, (a+b)n=n k=0? n k? a

À cause de (6), les nombres

?n k?s"appellent lescoefficients binomiaux. Démonstration: Ici encore la démonstration se fait par récurrence, nous donnerons ensuite une justification combinatoire. Pourn= 1: (a+b)1=?1 0? a

0b1+?1

1? a 1b0. Supposons que la formule est vraie pournet démontrons-la pourn+ 1. (a+b)n+1= (a+b)(a+b)n = (a+b)? n? k=0? n k? a kbn-k? n? k=0? n k? a k+1bn-k? n? k=0? n k? a kbn+1-k? n+1? h=1? n h-1? a hbn+1-h? n? k=0? n k? a kbn+1-k? =an+1+? n? h=1? n h-1? a hbn+1-h? n? k=1? n k? a kbn+1-k? +bn+1 =an+1+? n? k=1?? n k-1? +?n k?? a kbn+1-k? +bn+1 n+1? k=0? n+ 1 k? a kbn+1-k. Pour la dernière égalité, nous avons appliqué la formule du triangle de Pascal (3). Le résultat est démontré. Voici maintenant la justification combinatoire. La quantité(a+b)nest le produit denfacteurs, chacun contenant deux termesaetb. Quand on développe le produit, on prend dans le premier facteur un des deux termes, on le multiplie par un terme du second facteur, ainsi de suite jusqu"aun-ième facteur. Le produit obtenu est égal à a kbn-ksi on a choisi le termeadanskfacteurs et le termebdans lesn-kautres. Le nombre de produits égaux àakbn-kest le nombre de combinaisons dekfacteurs parmi n, soit?n k?.

1.3 Nombres complexes

Le reste de ce chapitre est une révision du programme de terminale sur les com- plexes. 8

Maths en LigneCalcul AlgébriqueUJF GrenobleLes nombres complexes sont nés de la nécessité de donner un sens à la racine

carrée de nombres négatifs, pour résoudre les équations algébriques. Dans l"ensemble des réels, l"équationx2= 1a deux solutions,+1et-1, mais l"équationx2=-1n"enquotesdbs_dbs16.pdfusesText_22
[PDF] somme definition maths

[PDF] somme département

[PDF] un produit

[PDF] analyse production d élève crpe

[PDF] cerfa 2731

[PDF] impot gouv cerfa 2731

[PDF] cerfa 2731 version 2017

[PDF] ecris chaque nombre comme somme d'un nombre entier et d'une seule fraction décimale inférieure ? 1

[PDF] comment decomposer une fraction

[PDF] ecris chaque nombre comme somme d'un nombre entier et d'une seule fraction decimale

[PDF] nous accusons réception de votre mail et nous vous en remercions en anglais

[PDF] quelle orientation souhaitez-vous donner ? votre carrière

[PDF] lettre de motivation candidature spontanée secrétaire

[PDF] relation de chasles 1ere s

[PDF] donner son numéro de sécurité sociale sur internet