[PDF] [PDF] Calcul Algébrique indices utilisant les symboles ? (somme)





Previous PDF Next PDF



Thème 13: Le symbole de sommation ?

1re notation possible : Pour calculer la somme des nombres entiers entre 1 Exercice 13.3: Écrire les sommes suivantes sans le signe ? et calculer cette.



Utilisation du symbole ?

symbole sigma. Voici un exercice d'application : Exercice 3 : Calculer chacune des sommes suivantes ou en donner la meilleure expression possible : Somme 



Exercices de mathématiques - Exo7

Les symboles ? et ? Exercice 1 IT Identités combinatoires ... Cet exercice est consacré aux sommes de termes consécutifs d'une suite arithmétique ou ...



Feuille dexercices no 5 - Sommes et produits

Écrire à l'aide du symbole ? les expressions suivantes (#) Nouvelle preuve de la somme des k et des k3 ... Calculer de deux manières la somme.



LE SYMBOLE DE SOMMATION

Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes. Ce symbole est généralement accompagné d'un indice que l'on 



Mathématiques ECS 1re année Le compagnon

Corrigés des exercices troduisons deux symboles extrêmement pratiques l'un pour la somme de nombres ... 1.1 Addition et symbole somme. 1.1.1 Définition.



I Les symboles ? et ?

Exemple 1 Soit m ? [[1 n]]



sommes.pdf

? est une lettre grecque majuscule équivalente à notre S. Le symbole ? est Si au cours d'un calcul



Cours de mathématiques - Exo7

Dans la suite on omettra les symboles >>>. Pour un entier n fixé programmer le calcul de la somme Sn = 13 + 23 + 33 + ··· + n3. ... Mini-exercices.1.



Sommes et produits

Pour chaque valeur de k on rajoute le nombre qk (à droite du signe somme) au Notation (Utilisation du symbole ?) ... vue en exercice.



[PDF] Thème 13: Le symbole de sommation ?

Exercice 13 3: Écrire les sommes suivantes sans le signe ? et calculer cette somme lorsque c'est possible a) S1 = 1 i i=1 4 ?



[PDF] Feuille dexercices no 5 - Sommes et produits

Écrire à l'aide du symbole ? les expressions suivantes (#) Nouvelle preuve de la somme des k et des k3 Calculer de deux manières la somme



Exercices corrigés -Calculs algébriques - sommes et produits

Exercices corrigés - Calculs algébriques - sommes et produits - formule du binôme Exercice 2 - Écrire à l'aide du symbole somme [Signaler une erreur] 



[PDF] Les symboles somme et produit - Lycée dAdultes

27 fév 2017 · DERNIÈRE IMPRESSION LE 27 février 2017 à 15:46 Les symboles somme et produit Table des matières 1 Le symbole somme r 2 1 1 Définition



[PDF] CALCULS ALGÉBRIQUES Sommes et produits finis

Exercice 5 : Somme de termes en progression arithmétique — Soit (uk) une suite de nombres réels en progression arithmétique Soit(m n) ? N2 tel que m



[PDF] Le binôme Les symboles ? et - Exo7 - Exercices de mathématiques

k=1 arctan 2 k2 Correction ? [005143] Exercice 8 I Calculer les sommes suivantes : 1 



[PDF] sommespdf - Pascal Ortiz

Déployer une somme Quand je parlerai de déployer une somme cela signi era qu'on récrit une somme initialement présentée avec le symbole sigma



[PDF] Calcul Algébrique

indices utilisant les symboles ? (somme) et ? (produit) 2 2 Exercices première borne celle qui est écrite au-dessous du signe somme 



[PDF] Utilisation du symbole ? - page pour se connecter

symbole sigma Voici un exercice d'application : Exercice 3 : Calculer chacune des sommes suivantes ou en donner la meilleure expression possible : Somme 



  • Quel est le symbole de la somme ?

    Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes.
  • Comment calculer ? ?

    ? [terme général d'une suite arithmétique] = [nombre de termes] × [premier terme] + [dernier terme] 2 .
  • Comment faire le signe somme ?

    Comment faire le symbole "Somme" ? (Sigma)

    1Faire le symbole "Somme" sous Windows (logiciels Microsoft) Faire le symbole "Somme" en majuscule : Alt + 9 3 1 -->? 2Faire le symbole "Somme" sur Mac / MacBook. Faire le symbole "Sigma" en majuscule (symbole somme) : Alt ? + ? Maj + S -->?
  • Exemples

    Somme des premiers entiers.Somme des premiers entiers impairs.Somme des premières puissances.Diviseurs d'un entier.Coefficients binomiaux.Sommes de Riemann.Autres sommes.
Université Joseph Fourier, Grenoble Maths en Ligne

Calcul Algébrique

Eric Dumas, Emmanuel Peyre, Bernard Ycart

Ce chapitre est consacré à la manipulation de formules algébriques, constituées de variables formelles, de réels ou de complexes. L"objectif est essentiellement pratique : " savoir calculer ». La seule nouveauté réside dans la manipulation de formules avec indices, utilisant les symboles?(somme) et?(produit). Pour le reste, vous aurez simplement à réviser votre cours de terminale sur les nombres complexes.

Table des matières

1 Cours 1

1.1 Sommes et produits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Trois formules à connaître . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Formes trigonométrique et exponentielle . . . . . . . . . . . . . . . . . 11

1.5 Géométrie du plan complexe . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Entraînement 16

2.1 Vrai ou faux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 QCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Corrigé du devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Compléments 37

3.1 Qu"on m"aille quérir M. Viète . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 L"homme qui savait tout... ou pas . . . . . . . . . . . . . . . . . . . . 38

3.3 Triangle de Pascal, binôme de Newton et poésie védique . . . . . . . . 39

3.4 Les formules de Ramanujan . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Le Rapido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Si non è vero, è bene trovato . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 La marquise de Tencin . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Equations résolubles par radicaux . . . . . . . . . . . . . . . . . . . . . 45

27 septembre 2014

Maths en LigneCalcul AlgébriqueUJF Grenoble1 Cours

1.1 Sommes et produits

Nous commençons par les sommes.

L"écriture

5? k=02k se lit "somme pourkallant de zéro à cinq de deux puissancek». C"est une notation abrégée pour : 2

0+ 21+ 22+ 23+ 24+ 25.

La lettrekest l"indice de sommation. On la remplace successivement par toutes les valeurs entières comprises entre les deuxbornes, qui sont0et5dans notre exemple. La première borne, celle qui est écrite au-dessous du signe somme, sera toujours inférieure ou égale à celle qui est au-dessus. Les bornes peuvent elles-mêmes être des variables, mais elles sont nécessairement différentes de l"indice de sommation. Par exemple, pour tout entier natureln:n? k=02k désigne la somme 2

0+ 21+ 22+ 23+···+ 2n-1+ 2n.

Rappelons que, par convention,a0= 1pour tout nombre réela. Prenez l"habitude d"écrire les sommes sous forme développée quitte à introduire des points de suspension entre les premiers termes et les derniers. Voici quelques exemples d"égalités illustrant la manipulation des indices et des bornes. Nous donnons sous chaque exemple une

écriture sous forme développée.

n k=12k=n-1? h=02h+1 2

1+···+ 2n= 20+1+···+ 2n-1+1.

L"indice de sommation peut être remplacé par n"importe quel autre : on dit que c"est unevariable muette. n k=02k+n h=12n+h=2n? k=02k (2

0+···+ 2n) + (2n+1+···+ 22n) = 20+···+ 22n.

Observez que la borne peut être une des variables de la quantité à sommer. n k=02n= (n+ 1)2n 2 n+···+ 2n= (n+ 1)2n. 1

Maths en LigneCalcul AlgébriqueUJF GrenobleDans cet exemple la quantité à sommer ne dépend pas de l"indice de sommation : celle-

ci a pour seul effet de compter les termes. Attention, pourm6n, il y an-m+ 1 termes dans la somme demàn. n k=01 h=02k+h=1 h=0n k=02k+h (2

0+ 21) +···+ (2n+ 2n+1) = (20+···+ 2n) + (21+···+ 2n+1).

Une double somme est une somme de sommes, et on peut toujours intervertir les deux. Voici un enchaînement d"égalités, montrant que la somme des puissances de2de20 jusqu"à2nvaut(2n+1-1)(c"est un cas particulier d"une formule à connaître que nous verrons plus loin). Pour chaque ligne de calcul, nous donnons à droite l"écriture sous forme développée. On rappelle que20= 1. n k=02k= 2? n? k=02k? n? k=02k?= 2(2

0+···+ 2n)-(20+···+ 2n)

n? k=02k+1? n? k=02k?= (2

1+···+ 2n+1)-(20+···+ 2n)

n+1? h=12h? n? k=02k?= (2

1+···+ 2n+1)-(20+···+ 2n)

= 2 n+1-20= 2 n+1-1. Ce que nous venons de voir pour les sommes s"applique aussi aux produits. Le produit des entiers de1ànintervient dans de nombreuses formules. C"est lafactorielle den. Elle se note "n!». n! =n k=1k= 1 2 3···(n-2) (n-1)n . Il est souvent utile d"étendre la définition de la factorielle en convenant que0! = 1. Voici les premières valeurs.n0 1 2 3 4 5 6 7 8 9 10 n!1 1 2 6 24 120 720 5040 40320 362880 3628800 Sinest un entier positif, unn-upletdésigne une liste ordonnée denobjets. On appellepermutation des nombres de1ànunn-uplet d"entiers(u1,...,un)dans lequel chaque entier entre1etnapparaît une et une seule fois. Par exemple(5,3,2,4,1)est une permutation des nombres de1à5. Théorème 1.Le nombre de permutations des nombres de1ànestn!. Démonstration: On montre le théorème par récurrence surn. 2

Maths en LigneCalcul AlgébriqueUJF GrenobleSin= 1, la seule permutation des entiers de1à1est(1).

On suppose donc que le résultat est vrai pour l"entiern. Montrons-le pour l"entier n+1. Soitkun entier tel que16k6n+1et comptons le nombreAkde permutations (u1,...,un+1) telles queuk=n+ 1. À une telle permutation, associons len-uplet : (u1,...,uk-1,uk+1,...,un+1). C"est une permutation des nombres de1àn. Inversement étant donnée une permutation (v1,...,vn)des entiers de1àn, alors (v1,...,vk-1,n+ 1,vk+1,...,vn) est une permutation des entiers de1àn+ 1dont lek-ième terme estn+ 1. En appliquant l"hypothèse de récurrence, on obtient queAk=n!. Donc le nombre total de permutations des nombres de1àn+ 1est : n+1? k=1A k=n+1? k=1n! = (n+ 1)n! = (n+ 1)!, ce qui montre le résultat pourn+ 1. Pour ordonnernobjets, il faut associer à chacun un nombre entre1etnde sorte que chaque nombre renvoie à un objet et un seul. Il y a autant de manières de le faire que de permutations desnpremiers entiers :n!. Au tiercé, il y a5! = 120manières d"ordonner les 5 premiers chevaux. Une seule donne l"ordre d"arrivée, soit le quinté dans l"ordre, et il y a119quintés dans le désordre. Lenombre de combinaisonsdekobjets parminest le nombre de manières de choisir kobjets parmin, sans distinguer leur ordre. ?n k? =n!k!(n-k)!.(1)

La notation

?n k?que nous utilisons ici, de préférence à l"ancienne notationCkn, est conforme aux programmes en vigueur et à l"usage international. Nous conseillons de la lire " denchoisirk». La formule (1) correspond au raisonnement suivant. Pour choisirkobjets, on peut se donner une permutation desnobjets, et décider d"en retenir leskpremiers. Parmi les permutations, toutes celles qui auront en commun leurskpremiers nombres conduiront au même choix. Il faut donc diviser par le nombre de permutations deskobjets choisis, et par le nombre de permutations desn-kobjets qui ne l"ont pas été. Observez que (1) ne change pas si on remplacekparn-k. ?n k? =?n n-k? 3

Maths en LigneCalcul AlgébriqueUJF GrenobleChoisirkobjets parmin(ceux que l"on garde) revient à en choisirn-k(ceux que l"on

laisse).

Voici une autre expression de?n

k?. ?n k? =1k!k-1? h=0(n-h) =n(n-1)···(n-k+ 1)1 2···k.(2) Notez qu"il y akfacteurs au numérateur, comme au dénominateur. On obtient cette formule en simplifiant le quotientn!/(n-k)!dans (1). On peut aussi raisonner comme suit. Il y anfaçons de choisir le premier objet, puisn-1de choisir le second (puisqu"un objet a déjà été choisi), etc. Pour choisir le k-ième objet, il resten-(k-1)possibilités. Ceci correspond au numérateur de (2). Cette manière de procéder retourne une liste ordonnée. Il faut donc diviser par le nombre d"ordres possibles deskobjets choisis, qui estk!. Observez les relations suivantes, faciles à déduire de (1) ou (2) et de la définition de la factorielle. ?n k? =nk n-1 k-1? =n-k+ 1k n k-1?

Pour calculer

?n k?en pratique, on n"utilise ni (1) ni (2). Le calcul récursif par la formule dutriangle de Pascal(connue des indiens, des chinois et des arabes bien avant Pascal) est beaucoup plus rapide. ?n k? =?n-1 k? +?n-1 k-1? .(3) Nous conseillons au lecteur de démontrer cette formule à partir des expressions (1) et (2). Voici la justification combinatoire. Supposons que parmi lesnobjets dontk doivent être choisis, l"un d"entre eux soit distingué (disons qu"il est rouge). Parmi les choix possibles dekobjets, certains ne contiennent pas l"objet rouge, d"autres le contiennent. Les premiers sont au nombre de?n-1 k?, car leskobjets sont choisis parmi lesn-1différents de l"objet rouge. Les choix contenant l"objet rouge sont au nombre de?n-1 k-1?car l"objet rouge ayant été retenu, il restek-1objets à choisir parmi lesn-1 autres. Voici, disposées en triangle, les valeurs de?n k?pournallant de0à6. n\k0 1 2 3 4 5 6 01 11 1

21 2 1

31 3 3 1

41 4 6 4 1

51 5 10 10 5 1

61 6 15 20 15 6 1

4

Maths en LigneCalcul AlgébriqueUJF GrenobleChaque valeur est la somme de celle qui est au-dessus, et de celle qui est à gauche de

celle qui est au-dessus. S"il n"est pas indispensable de connaître ce tableau par coeur, il est souvent utile de savoir le réécrire rapidement.

1.2 Trois formules à connaître

Les formules données par les trois théorèmes qui suivent vous seront souvent utiles. Théorème 2.Pour tout entiern>1, la somme desnpremiers entiers vaut n(n+ 1)/2. n? k=1k= 1 + 2 +···+n=n(n+ 1)2 .(4) Démonstration: Nous donnons d"abord la démonstration par récurrence. Nous verrons ensuite une justification géométrique et une justification combinatoire. L"hypothèse de récurrence est : H(n)n k=1k=n(n+ 1)2

Pourn= 1:1?

quotesdbs_dbs8.pdfusesText_14
[PDF] répondre aux critiques

[PDF] le quotient en math

[PDF] comment faire face aux critiques au travail

[PDF] comment gérer les critiques au travail

[PDF] comment faire face aux insultes

[PDF] definition somme math

[PDF] comment faire face aux critiques dans le couple

[PDF] guide de l'utilisateur pour la définition des pme

[PDF] pme au sens communautaire entreprises liées

[PDF] définition pme commission européenne

[PDF] pme communautaire bofip

[PDF] guide pme communautaire

[PDF] définition des pme au maroc

[PDF] pme communautaire entreprises liées

[PDF] petite entreprise au sens communautaire