[PDF] Les symboles somme et produit - Lycée dAdultes





Previous PDF Next PDF



Feuille dexercices n˚8 : corrigé

13 déc. 2011 1. 2 . • On reconnait une somme télescopique dans la somme partielle : n. ∑ k=1 ln. (k + 1 k. ) = n. ∑ k=1 ln(k +. 1) − lnk = ln(n + 1) − ln ...



Exercice. Convergence de ∑ ln(1 − 1 k2 ) et valeur de la somme de

Donc ∑(an+1 −an) converge absolument par règle de comparaison. La série est téléscopique donc (an) converge et il existe γ tq an = γ + o(1).



Séries

(somme télescopique). Si la série de terme général un converge alors limn→+∞ un = 0 et donc 0 < un. ∼ n→+∞ ln(1+un). Donc la série de terme général ln(1 



[PDF] Séries - Exo7 - Cours de mathématiques

En effet elle peut être écrite comme somme télescopique



Somme téléscopique À laide dun téléscopage

25 sept. 2021 — On mobilisera les propriétés opératoires de la fonction logarithme pour cela. Éléments de correction. On a tout d'abord que : ∀k ∈ 2; n ln.



Devoir Maison n  3 Devoir Maison n 3

On va majorer chaque terme de la somme par ln(k)−ln(k −1). Cependant l On reconnaîtra ensuite une somme télescopique. vn. = 1+ n. ∑ k=2. 1 k. ≤ 1 + n.



Sommes et Produits 1 Sommes

S3 = ln 2 + ln 4 + ln 6 + + ln 12. S4 = 1 − 2+3 − 4 + ... − 102 + 103 ... On parle de somme télescopique lorsque le terme général est la différence ...



Calculs de sommes et de produits finis

10 août 2023 Sommes téléscopiques. Proposition 4



Les symboles somme et produit - Lycée dAdultes

27 fév. 2017 k. • On utilise une somme télescopique : Sn − xSn = n. C k=p x k ... ln ak. 2.3 Produits télescopiques. Théorème 7 : Produits télescopiques.



Feuille dexercices no 5 - Sommes et produits

Des sommes télescopiques. Calculer les sommes suivantes : 1. (#) A = n. ∑ k=1 ln(k + 1) − ln k = ln(n + 1) − ln(1) = ln(n + 1). 19. n. ∑ k=0. 1. (k + 2)(k ...



Feuille dexercices n?8 : corrigé

13 déc. 2011 On reconnait une somme télescopique dans la somme partielle : ... ln 2. Exercice 2 (**). Le plus simple pour déterminer la nature de la ...



Exercice. Convergence de ? ln(1 ? 1 k2 ) et valeur de la somme de

Donc ?(an+1 ?an) converge absolument par règle de comparaison. La série est téléscopique donc (an) converge et il existe ? tq an = ? + o(1).



Séries

(somme télescopique). Si la série de terme général un converge alors limn?+? un = 0 et donc 0 < un. ? n?+? ln(1+un). Donc la série.



Les symboles somme et produit - Lycée dAdultes

27 févr. 2017 entiers naturels n et p tels que p ? n on définit la somme suivante par ... ln ( n n k=p ak) = n. C k=p ln ak. 2.3 Produits télescopiques.



Séries

En effet elle peut être écrite comme somme télescopique



Calculs de sommes et de produits finis

13 sept. 2021 Application



Séries

16 mars 2020 ln(n). = 1. Par théorème d'encadrement on trouve ainsi que lim n?+?. Sn ln(n) ... n+1



Sommes et produits de nombres

ln( k2. (k ? 1)(k + 1)) . Exercice 6 : Écrire à l'aide de factorielles les expressions suivantes : (a) n.



Feuille dexercices n?21 : corrigé

5 juin 2014 u0 ? un+1 = u0 donc la série de terme général u2 n converge vers u0. 3. La somme partielle va également être télescopique : k=n. ? k=0 ln.



Compléments sur les suites Suites adjacentes - Correction - Lycée d

27 févr. 2017 Comme la dernière somme est télescopique on a un ? ln(n + 1) ? ln 1 ? un ? ln(n + 1) or lim n?+? ln(n + 1)=+?



[PDF] [PDF] Séries - Exo7 - Cours de mathématiques

Une somme télescopique est une série de la forme ? k?0 (ak+1 ? ak) Cette série est convergente si et seulement si l := limk?+? ak existe et dans ce 



[PDF] Feuille dexercices n?8 : corrigé - Normale Sup

13 déc 2011 · On reconnait une somme télescopique dans la somme partielle : n ? k=1 ln (k + 1 k ) = n ? k=1 ln(k + 1) ? lnk = ln(n + 1) ? ln 1



[PDF] Devoir Maison n?3

On reconnaîtra ensuite une somme télescopique vn = 1+ n ? k=2 1 k ? 1 + n ? k=2 (ln(k) ? ln(k ? 1)) ? 1 + ln(n) ? ln(2 ? 1) ? 1 + ln(n)



[PDF] Les symboles somme et produit - Lycée dAdultes

27 fév 2017 · Exemples : Les sommes télescopiques sont une méthode très efficace pour calcu- ler la somme des termes d'une suite (un) Il s'agit de trouver 



[PDF] Calculs de sommes et de produits finis

21 sept 2022 · Application[2504] 9 Somme téléscopique À l'aide d'un téléscopage de termes exprimer en fonction de n ? 2 la somme n ? k=2 ln



[PDF] Feuille dexercices no 5 - Sommes et produits

Reprendre la méthode de l'exercice précédent pour retrouver la formule de n ? k=0 k3 Exercice 10 Des sommes télescopiques Calculer les sommes suivantes 



[PDF] Calcul de sommes et de produits

1 1 2 2 Sommes des entiers et somme des carrés ln ( sin (k? 2n )) ; poser k = 2n ? k 1 2 3 Sommes télescopiques Proposition 7



[PDF] Séries numériques - Xiffr

Calculer la somme lorsqu'il y a convergence (a) Étudier la suite de terme général ln(un+1) ? ln(un) k(k?1) et sommation télescopique) Au final



[PDF] Exercice Convergence de ? ln(1 ? 1 k2 ) et valeur de la somme de

Donc ?(an+1 ?an) converge absolument par règle de comparaison La série est téléscopique donc (an) converge et il existe ? tq an = ? + o(1)

  • Comment calculer la somme d'une série numérique ?

    Lorsqu'une expression comporte plusieurs opérations, on peut se demander s'il s'agit d'une somme ou d'un produit. C'est une somme car : on commence le calcul par la multiplication, elle est prioritaire : 3 × 4 = 12 ; on effectue l'addition : 2 + 12 = 14.
  • Comment calculer la somme d'un produit ?

    Lorsque n augmente, sa n-ième somme partielle Sn augmente (lentement) et finit par dépasser tout nombre donné par avance : cette somme tend vers l'infini. La série harmonique ne converge pas, on dit qu'elle est divergente.
  • Comment montrer qu'une série est divergente ?

    Lorsqu'une telle série est convergente, on note ? n = n 0 + ? u n ou sa somme ? n = n 0 + ? u n (le choix de l'une ou l'autre notation étant d'ordre typographique et non mathématique) c'est-à-dire la limite de la suite ( ? k = n 0 n u k ) quand tend vers .
DERNIÈRE IMPRESSION LE27 février 2017 à 15:46

Les symboles somme et produit

Table des matières

1 Le symbole sommeΣ2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Linéarité et changement d"indice. . . . . . . . . . . . . . . . . . . . 3

1.3 Sommes télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Sommes à connaître. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Sommes doubles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Le symbole produitΠ9

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Relation produit - somme. . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Produits télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 9

PAUL MILAN1VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1 Le symbole sommeΣ

1.1 Définition

Définition 1 :Soit(ai)une suite de nombres réels ou complexes. Soit deux entiers naturelsnetptels quep?n, on définit la somme suivante par : n∑ k=pa k=ap+ap+1+···+an Soit I un sous-ensemble fini deN, la somme de tous les termesai,idécrivant I sera notée∑ i?Ia i

Remarque :

•La variablekest une variable muette, c"est à dire qu"une fois la somme calculée, le résultat ne dépend plus dek. On peut donc lui donner le nom qu"on veut :i, j,k, etc. à exception des bornes de la somme, icipetn:n∑ k=pa k=n∑ i=pa i=n∑ j=pa j

•On retrouve cette variable muette, lorsque l"on veut calculer une somme àl"aide d"un algorithme. (boucle Pour)

•Lorsque les termes de la somme ne dépendent pas de la variable, on somme des termes constants donc : n∑ k=03=3+3···+3? n+1 termes=3(n+1)

•Si I={2;4;6}alors∑

i?Ia i=a2+a4+a6.

Exemples :

•1+2+···+n=n∑

k=1k.

•1+2+22+···+2n=n∑

k=02k. •1 n+1+1n+2+···+12n=n∑ k=11n+k.

•1+3+5+···+(2n-1) =n∑

k=1(2k-1). ?Ne pas confondre : n∑ k=1(k+1) =n∑ k=1k+navecn∑ k=1k+1 les parenthèses font toute la différence. n∑ k=022k(n+1 termes) et2n∑ k=02k(2n+1 termes) Propriété 1 :Relation de Chasles et linéarité :

Relation de Chasles :

n∑ k=pa k= m∑ k=pa k+n∑ k= m+1 ak

L"opérateur somme est linéaire :

n∑ k=p(αak+βbk) =αn∑ k=pa k+βn∑ k=pb k.

PAUL MILAN2VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

Exemple :n∑

k=0a k=

2∑

k=0a k+n∑ k= 3 aketn∑ k=0(3k+4k) =n∑ k=03k+4n∑ k=0k

1.2 Linéarité et changement d"indice

Propriété 2 :Changement d"indice.

L"expression à l"aide du symbole

∑n"est pas unique. On peut écrire une somme avec des indices différents. Les changements d"indicesk→k+p(translation)k→p-k(symétrie) sont les plus fréquents :n∑ k=1a k=n+p k=p+1a k-p=p-1 k=p-na p-k

Exemples :Calculer la somme :Sn=n∑

k=1?

1k-1k+1?

•On utilise la linéarité :Sn=n∑

k=11k-n∑ k=11k+1 •On effectue un changement d"indice sur la deuxième somme :k→k+1 : S n=n∑ k=11 k-n+1∑ k=21k. k=21k-n∑ k=21k-k=n+1? ???1 n+1=1-1n+1

Pourn?2, on considère la sommeSn=n+1∑

k=2k22k-1. Faire une translation d"indice pour que la nouvelle variable varieentre 0 et(n-1) et une symétrie d"indice pour que la nouvelle variable varie entre 2et(n+1). •Pour la translation, il suffit de faire :k→k-2, on a alors : S n=n-1∑ k=0(k+2)22(k+2)-1=n-1∑ k=0(k+2)22k+3 •Pour la symétrie, il faut déterminer le milieu :2+ (n+1)2=n+32. On effectue alors la symétriek→n+3-k, on a alors : S n=n+1∑ k=2(n+3-k)22(n+3-k)-1=n+1∑ k=2(n+3-k)22n+5-2k

PAUL MILAN3VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.3 Sommes télescopiques

Théorème 1 :Sommes télescopiques

Soit une suite(an)une suite de nombres réels ou complexes, on a : ?n,p?N,p?n,n∑ k=p(ak+1-ak) =an+1-ap

Remarque :n∑

k=0(ak+1-ak) =an+1-a0etn∑ k=0(bk-bk+1) =b0-bn+1

Démonstration :On pose :Sn=n∑

k=p(ak+1-ak)

•On utilise la linéarité :Sn=n∑

k=pa k+1-n∑ k=pa k •On effectue un changement d"indice sur la première somme :k→k+1 S n=n+1∑ k=p+1a k-n∑ k=pa k •On sépare les termes différents :Sn=an+1+n∑ k=p+1a k-n∑ k=p+1a k-ap=an+1-ap Exemples :Lessommestélescopiquessontuneméthodetrèsefficacepourcalcu- ler la somme des termes d"une suite(un). Il s"agit de trouver une suite(vn)pour queun=vn+1-vn. Ce n"est bien sûr pas toujours possible malheureusement.

Calculer les sommes suivantes :

•Sn=n∑

k=11k(k+1): on décompose1k(k+1)en1k-1k+1 S n=n∑ k=11 k(k+1)=n∑ k=1?

1k-1k+1?

=1-1n+1.

•Rn=n∑

k=1k×k! : on décomposek×k! en(k+1)k!-k!= (k+1)!-k! R n=n∑ k=1k×k!=n∑ k=1[ (k+1)!-k!]= (n+1)!-1

•Tn=n∑

k=11k(k+1)(k+2) a k(k+1)-a(k+1)(k+2)=a(k+2)-akk(k+1)(k+2)=2ak(k+1)(k+2), on aa=12 T n=n∑ k=11 k(k+1)(k+2)=12n∑ k=1?

1k(k+1)-1(k+1)(k+2)?

1 2?

12-1(n+1)(n+2)?

n(n+3)

4(n+1)(n+2)

PAUL MILAN4VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.4 Sommes à connaître

Théorème 2 :Somme des entiers, des carrés, des cubes Pour tout entier naturelnnon nul, on a les relations suivantes :

•S1(n) =n∑

k=1k=1+2+···+n=n(n+1)2

•S2(n) =n∑

k=1k2=1+4+···+n2=n(n+1)(2n+1)6

•S3(n) =n∑

k=1k3=1+8+···+n3=n2(n+1)24 Démonstration :La première formule a été démontré en première en ordon- nant la somme dans l"ordre croissant puis dans l"ordre décroissant. Les deux der- nières formules ont été démontré en terminale par récurrence. Mais les démons- trations directes sont possibles à l"aide de sommes télescopiques. On pourrait généraliser ces démonstration aux somme des puissancespième des entiers na- turels.

•S1(n), on utilise la sommen∑

k=1[(k+1)2-k2] = (n+1)2-1 n∑ k=1[(k+1)2-k2] =n∑ k=1(k2+2k+1-k2) =n∑ k=1(2k+1) =2n∑ k=1k+n∑ k=11=2S1(n) +n

On en déduit que :

2S1(n) +n= (n+1)2-1?S1(n) =(n+1)2-(n+1)

2=n(n+1)2

S2(n), on utilise la sommen∑

k=1[(k+1)3-k3] = (n+1)3-1 n∑ k=1[(k+1)3-k3] =n∑ k=1(k3+3k2+3k+1-k3) =n∑ k=1(3k2+3k+1) =3n∑ k=1k2+3n∑ k=1k+n∑ k=11=3S2(n) +3S1(n) +n

On en déduit que :

3S2(n)+3S1(n)+n= (n+1)3-1?3S2(n) =?(n+1)3-1-3S1(n)-n??

S 2=1 3? (n+1)3-3n(n+1)2-(n+1)? =2(n+1)3-3n(n+1)-2(n+1)6 (n+1)(2n2+4n+2-3n-2)

6=(n+1)(2n2+n)6=n(n+1)(2n+1)6

PAUL MILAN5VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

•S3(n), on utilise la sommen∑

k=1[(k+1)4-k4] = (n+1)4-1 n∑ k=1[(k+1)4-k4] =n∑ k=1(k4+4k3+6k2+4k+1-k4) =n∑ k=1(4k3+6k2+4k+1) =4n∑quotesdbs_dbs45.pdfusesText_45
[PDF] somme changement d'indice

[PDF] somme télescopique exercice corrigé

[PDF] série téléscopique exercice

[PDF] somme télescopique suite

[PDF] somme telescopique convergence

[PDF] somme théologique iii

[PDF] saint thomas d aquin wikipedia

[PDF] somme théologique saint thomas pdf

[PDF] le chat et les pigeons pdf

[PDF] obligation d être prof principal

[PDF] décret no 93-55 du 15 janvier 1993

[PDF] bo n°5 du 4 février 1993

[PDF] je ne vois dans tout animal qu'une machine ingénieuse these

[PDF] explication de texte philosophie rousseau discours sur l origine

[PDF] différents aspects du travail