[PDF] Chapitre 3 Méthode du simplexe





Previous PDF Next PDF



Cours-Optimisation.pdf

Cours d'Optimisation Dans ce cours on supposera que le coût dépend ... méthode consiste `a établir un développement limité de J sous la forme suivante ...



Résumé du cours doptimisation.

13 sept. 2005 Résumé du cours d'optimisation. ... 5 Méthodes pour les problèmes avec contraintes. 27. 5.1 Méthode de gradient projeté à pas variable .



COURS OPTIMISATION Cours à lISFA en M1SAF Ionel Sorin

COURS OPTIMISATION. Cours à l'ISFA en M1SAF 3.2.1 Méthodes de gradient à pas optimal . ... 4.2 Optimisation sous contraintes d'inégalités .



Cours doptimisation ENSAI Rennes

11 déc. 2019 8 Optimisation avec contraintes mixtes d'égalité et d'inégalité 48 ... 9.2.2 Méthode de gradient `a pas variable . . . . . . . . . . . 53.



Résumé dOptimisation

5.1.2 Méthode de la plus profonde descente (méthode du gradient) . . . . . . . . . . 17 Ceci un résumé des principaux résultats du cours d'optimisation.



Cours dOptimisation numérique

4.1.3 Conditionnement pour la méthode de gradient `a pas optimal . de G. Carlier (optimisation) : https://www.ceremade.dauphine.fr/?carlier/progdyn.pdf.



Optimisation mathématique avec applications en imagerie

12 mai 2020 7.5.4 Perturbation des conditions d'optimalité III : méthodes ... J'ai utilisé des versions antérieures de ces notes dans les cours de ...



Chapitre 3 Méthode du simplexe

Afin de ne pas nuire à la lisibilité du texte nous avons convenu de ne pas changer de notation pour la matrice A et des vecteurs b et c en cours d'itération du 



Modèles et méthodes doptimisation I

UCLouvain - cours-2021-linma1702 - page 1/3 Optimisation non-linéaire : conditions d'optimalité convexité



Techniques doptimisation

La méthode d'extrapolation de Richardson appliquée aux fonctions A(h) et B(h) Le facteur d'échelle dépend du point x ? à adapter au cours des itérations.



[PDF] Cours-Optimisationpdf

L'optimisation consiste en la recherche du minimum (ou du maximum) d'une cer- taine quantité appelée coût ou objectif Dans ce cours on supposera que le 



[PDF] Techniques doptimisation

Méthodes à base de gradient ? Méthodes sans dérivées • Déterminisme : Les données du problème sont parfaitement connues ? Optimisation stochastique



[PDF] COURS OPTIMISATION Cours à lISFA en M1SAF Ionel Sorin

COURS OPTIMISATION Cours à l'ISFA en M1SAF Ionel Sorin CIUPERCA 1 3 2 1 Méthodes de gradient à pas optimal Voir cours en amphi



[PDF] Manuel de Cours Optimisation - univ-ustodz

Ce manuscrit traite les notions de base de l'optimisation et s'adresse essen- tiellement au étudiants de Master 1 spécialité Automatique et Informatique



[PDF] Résumé du cours doptimisation

13 sept 2005 · Résumé du cours d'optimisation 4 3 1 Méthode à pas variable Dans les problèmes d'optimisation les ensembles de contraintes sont 



[PDF] Cours doptimisation ENSAI Rennes

11 déc 2019 · 8 Optimisation avec contraintes mixtes d'égalité et d'inégalité 48 9 2 1 Méthode de gradient `a pas fixe 53



[PDF] Cours Optimisationpdf

Les méthodes de résolution sont la méthode du simplexe méthode duale du simplexe méthodes des potentiels méthode lexicographique et des méthodes récentes 



[PDF] optimisationpdf

Plan du cours • Introduction • Analyse de la fonction objectif • Conditions d'optimalité sans contrainte • Résolution d'équations • Optimisation sans 



[PDF] Cours doptimisation

Nous avons vu dans le chapitre 4 2 la méthode de substitution permettant d'optimiser une fonction de deux variables f(x y) sous une contrainte du type : y = g( 



[PDF] Introduction `a loptimisation

Chapitre 2 Méthodes de résolution des probl`emes d'optimisation non linéaire sans contrainte 2 1 Quelques définitions 2 1 1 Définitions

  • Quelles sont les méthodes d'optimisation ?

    Le principe d'optimisation est l'application du principe ALARA, énoncé par la CIPR 60 en 1990 : « maintenir le niveau des expositions individuelles et le nombre de personnes exposées aussi bas qu'il est raisonnablement possible compte tenu des considérations économiques et sociales ».
  • Quel est le principe de l'optimisation ?

    La fonction à optimiser s'écrit sous la forme z=ax+by+c, z = a x + b y + c , où x et y sont les variables et où z représente la quantité qu'on cherche à maximiser ou à minimiser.
  • Comment calculer l'optimisation ?

    Produit une liste contenant la valeur minimale de la fonction, le point minimum, le gradient au point minimum ainsi qu'une évaluation de la qualité de l'itération (de 1 à 5). Produit aussi sur demande la matrice hessienne au point minimum: hessian = T. ?l(?, ?) #on change le signe pour minimiser
Chapitre 3 Méthode du simplexe

Chapitre 3

Méthode du simplexe

Comme toujours, on suppose queAune matrice de formatmnetb2Rm. On notera les colonnes deApar[a1;a2;:::;an]. Aussi, on fera l"hypothèse que le rang de la matriceAest

égal à m.

Selon le chapitre précédent, nous savons que la solution optimale du problème d"optimisation

linéairemaxz=ctx; Ax=b; x0:(3.1) se trouve en un sommet de l"ensemble convexe des solutions admissiblesK=fx0jAx= bg. De plus, nous savons que les sommets sont étroitement reliés aux solutions de base admis- sibles. Concrètement, cela signifie que si on choisit une liste de m variables dites de base B=fxj1;xj2;:::;xjmgassociées à des colonnesfaj1;aj2;:::;ajmgqui forment une base de l"espace-colonne, on peut calculer l"unique solution de bases du système Ax B=b en imposant que les variables hors-basexi= 0pour tous lesi6=j1;j2;:::;jm. SixB0, la

solution est admissible et sera appellée solution de base admissible ou réalisable. D"après le

chapitre précédent, la solution de basexBcorrespond à un sommet deK. Par conséquent, il suffit de calculer tous les sommets deKpour trouver la solution optimale.

Mais le nombre de sommets est de l"ordre

n!m!(nm)!ce qui est beaucoup trop pour desnetm relativement grands. Le principe de la méthode du simplexe est d"éviter de calculer tous les sommets. A partir d"un sommet donné, la méthode calculera une suite de sommets adjacents l"un par rapport au précédent et qui améliore la fonction objective.

3.1 Solutions de base adjacentes

Définition

3.1.1 Deux sommetsxetysont dits adjacents si les variables de base ne

diffèrent que d"un seul élément. 1

2CHAPITRE 3. MÉTHODE DU SIMPLEXE

Reprenons le problème modèle du premier chapitre écrit sous la forme canonique maxz= 5x1+ 4x2 x

1+x3= 6

x

1=4 +x2+x4= 6

3x1+ 2x2+x5= 22

x

1;x2;x3;x4;x50

Le sommetx= (4;5;2;0;0)correspond aux variables de basefx1;x2;x3g. De même, le sommety= (6;2;0;2:5;0)est associé aux variables de basefx1;x2;x4g. Les deux sommets sont adjacents ce qui est conforme au graphique de l"ensembleKprojeté dansR2.

Le système s"écrit

2 6

641 0 1 0 0

1=4 1 0 1 0

3 2 0 0 13

7 752
6 6664x
1 x 2 x 3 x 4 x 53
7

7775=2

6 646
6 223
7 75
Pour calculer la solution de base(4;5;2;0;0), il suffit d"extraire les 3 colonnes de la matriceA

et de résoudre le système carré par la méthode d"élimination de Gauss. Toutefois, lorsque que

l"on voudra calculer la nouvelle solution de base(6;2;0;2:5;0), il faudra recommencer l"éli- mination de Gauss avec les nouvelles colonnes de base. Il est plus avantageux de poursuivre élimination de Gauss à partir du premier calcul.

Voici un exemple de calcul.

a)

En premier, on forme la matrice augmen tée

2 6

641 0 1 0 0 6

1=4 1 0 1 0 6

3 2 0 0 1 223

7 75
b) On applique l"élimination de Gauss-Jordan p ourles v ariablesde base fx1;x2;x3g. 2 6

641 0 04=5 2=5 4

0 1 0 6=51=10 5

0 0 1 4=52=5 23

7 75
Donc x

1= 4 + 4=5x42=5x5

x

2= 56=5x4+ 1=10x5

x

3= 24=5x4+ 2=5x5

En posant les variables hors-basesx4=x5= 0, on obtient bien la solution de base x= (4;5;2;0;0).

3.2. MÉTHODE DU SIMPLEXE : PHASE II3

c) Main tenant,on désire calculer la solution de base adjacen tel iéesaux v ariablesd ebase fx1;x2;x4g. Pour cela, on poursuit l"élimination de Gauss-Jordan à partir du pivot a 3;42 6

641 0 1 0 0 6

0 13=2 0 1=2 2

0 0 5=4 11=2 5=23

7 75:
Donc x

1= 6x3

x

2= 2 + 3=2x31=2x5

x

4= 5=25=4x3+ 1=2x5

En posant les variables hors-basesx3=x5= 0, on obtient bien la solution de base y= (6;2;0;2:5;0). d) P oursuivonsà u nautre sommet adjacen tz= (6;0;0;4:5;4)dont les variables de base sontfx1;x4;x5g. Ce sommet est adjacent àymais pas àx. Poursuivons l"élimination de Gauss-Jordan à partir du pivota2;5 2 6

641 0 1 0 0 6

0 23 0 1 4

0 11=4 1 0 9=23

7 75:

On obtient les relations

x

1= 6x3

x

5= 42x2+ 3x3

x

4= 9=2x2+ 1=4x3

En posant les variables hors-basesx2=x3= 0, on obtient bien la solution de base z= (6;0;0;4:5;4). L"opération décrite ci-dessus est aussi connue sous le nom de pivotement. Cette stratégie sera à la base de la méthode du simplexe.

3.2 Méthode du simplexe : Phase II

Dans cette section, nous allons présenter la Phase II de la méthode du simplexe. La Phase

I qui sert plus à initialiser la Phase II, sera aborder plus tard. Cette phase s"applique à des

problèmes du type maxz=ptx; Cxb; x0:ouminz=ptx; Cxb; x0:(3.2)

4CHAPITRE 3. MÉTHODE DU SIMPLEXE

oùCest une matrice de formatmn. On fera l"hypothèse queb0. Cette supposition est cruciale pour la Phase II. Ceci garantie que02K=fx0jCxbg. De plus, nous savons que le point0est un sommet. Ce point servira de point de départ de l"algorithme du simplexe. En gros, l"algorithme va pivoter autour de ce point pour trouver un meilleur sommet. On poursuit l"algorithme jusqu"à l"obtention de la solution optimale.

La méthode débute avec la forme canonique du problème (3.2) que l"on écrira sous la forme

maxz=ctx; Ax=b; x0:(3.3) Attention, nous avons inclus les variables d"écart dans la liste des variables, i.e.x2Rm+n.

La matriceAetcsont données par

A= [C I]c=p

0

L"idée de base de la méthode du simplexe consiste à appliquer l"élimination de Gauss-Jordan

à partir du système augmenté obtenu en ajoutant au systèmeAx=bla relation linéaire z=ctxAx=b; c txz= 0 Ce système peut s"écrire sous la forme matricielle A0 c t1 x z =b 0

Nous allons illustrer la méthode sur l"exemple

maxz=x1+ 2x2 sous les contraintes 8< :2x1+x22; x

1+ 3x23;

x

1;x20:

Au préalable, on écrit le problème sous la forme canonique maxz=x1+ 2x2 sous les contraintes 8< :2x1+x2+x3= 2; x

1+ 3x2+x4= 3;

x

1;x2;x3;x40:

Voici les étapes de la méthode du simplexe.

3.2. MÉTHODE DU SIMPLEXE : PHASE II5

0.

I nitialisation

On choisit la solution de base admissible(0;0;2;3)comme point de départ de l"algo- rithme. Les variables de base sontfx3;x4get les variables hors-base sontfx1;x2g. Ce choix est toujours possible sib0.

On forme le tableau initialT.

2 6

642 1 1 0 0 2

1 3 0 1 0 3

1 2 0 01 03

7 75
1.

Choix de la colonne de piv ot

On doit aller vers un sommet adjacent pour lequel la valeur de la fonction objectivez en ce sommet est supérieure. Pour cela, on choisira la variablexiqui fera augmenter le plus rapidementz. C"est-à-dire que l"on choisit l"indiceiqui maximise@z@x i=ci>0. Dans notre cas, la fonctionzvarie plus rapidement en fonction de la variablex2. Donc, on choisit la deuxième colonne comme colonne de pivot. La variablex2entre dans la base mais une variable doit sortir. Remarque 3.2.1Si tous lesci0, la fonction objectivezne peut augmenter davantage. Donc nous avons trouver la solution optimale et l"algorithme se termine à cette étape. 2.

Choix de la lign ede piv ot

Quels sont les sommets adjacents de disponible et ayant la variablex2? Il y a 2 possibilités :fx2;x3getfx2;x4g. Essayons le choixfx2;x4g. Donc,x3quitte la base. La solution de base s"obtient à l"aide de l"élimination de Gauss-Jordan à partir du pivota12. On obtient : 2 6

642 1 1 0 0 2

5 03 1 03

3 02 0143

7 75
et la nouvelle solution de base sera(0;2;0;3)qui n"est pas admissible! Essayons de nouveau avecfx2;x3g. Donc,x4quitte la base. La solution de base s"obtient à l"aide de l"élimination de Gauss-Jordan à partir du pivota22. On obtient : 2 6

645=3 0 11=3 0 1

1=3 1 0 1=3 0 1

1=3 0 02=3123

7 75
et la nouvelle solution de base serax= (0;1;1;0)qui est admissible.

6CHAPITRE 3. MÉTHODE DU SIMPLEXE

On observe que la dernière ligne s"écrit

1=3x12=3x4z=2()z= 2 + 1=3x12=3x4:

Etant donné que les variable hors-base vérifiex1=x4= 0, on a quez= 2qui est la valeur de la fonction objective au sommetx= (0;1;1;0). 3.

On retourne à l"étap e1.

La dernière ligne du tableau~cxz=2fournie toujours la valeur dez= ~cx+ 2.

Même si les coefficients decont été modifiés, le principe de base de l"étape 1 s"applique.

C"est-à-dire que l"on choisit l"indiceiqui maximise@z@x i= ~ci>0. Dans notre cas, la fonctionzvarie plus rapidement en fonction de la variablex1. Donc, on choisit la première colonne comme colonne de pivot. La variablex1entre dans la base et une variable doit sortir. 4.

On retourne à l"étap e2.

Les sommets adjacents (ayant la variablex1de commun) sontfx1;x2getfx1;x3g.

Essayons avecfx1;x3g. On obtient :

2 6

6405 12 04

1 3 0 1 0 3

01 01133

7 75
et la nouvelle solution de base sera(3;2;4;0)qui n"est pas admissible! Essayons l"autre possibilité avecfx1;x2g. On obtient :2 6

641 0 3=51=5 0 3=5

0 11=5 2=5 0 4=5

0 01=53=51115

3 7 75
et la nouvelle solution de base sera(3=5;4=5;0;0)qui est admissible! 5.

On retourne à l"étap e1.

Dans ce cas, la solution sera optimale car les coefficients (pourx1àx4)de la dernière ligne sont tous négatifs ou nuls. On ne peut améliorer la solution en visitant d"autres sommets adjacents. La valeur dezest celle donnée au coin inférieure droit :z= 11=5 car il faut en changer le signe selon la relation~cxz=11=5. Remarque 3.2.2En premier lieu, on observe que l"avant dernière colonne est toujours inchangé. Cela est logique car cette colonne n"est jamais choisie comme colonne de pivot.

Son rôle est de fournir la valeur dez. Par conséquent, il est inutile d"écrire cette colonne.

Deuxièmement, il est évident que nous ne pouvons nous permettre d"explorer toutes les

possibilités pour le choix de la ligne de pivot à l"étape 2. Nous avons besoin d"un critère de

sélection.

Voici les étapes de la méthode du simplexe. Afin de ne pas nuire à la lisibilité du texte, nous

avons convenu de ne pas changer de notation pour la matriceAet des vecteursbetcen cours d"itération du simplexe. On notera parBle choix de la base à chaque étape du simplexe.

3.2. MÉTHODE DU SIMPLEXE : PHASE II7

Algorithme du simplexe

Étape 0 :

On forme le tableau initial Bx

1x2::: xnxn+1xn+2::: xn+mx

n+1a

11a12::: a1n1 0:::0b

1x n+2a

21a22::: a2n0 1:::0b

2. ..x n+ma m1am2::: a1n0 0:::1b mc

1c2::: cn0 0:::00

La base initiale de l"espace-colonne serafxn+1;xn+2;:::;xn+mg. Les autres variables seront égales à0ce qui correspond au point de départx= (0;0;:::;0).

Étape 1 :

On doit c hoisirla colonn ede piv ot.

quotesdbs_dbs32.pdfusesText_38
[PDF] optimisation mathematiques pdf exercices

[PDF] cours optimisation master

[PDF] exercices corrigés de convexité et optimisation

[PDF] exercices corrigés doptimisation pdf

[PDF] cours doptimisation pour économistes

[PDF] cours optimisation sans contrainte

[PDF] resume cours optique geometrique

[PDF] cours de physique optique cours et exercices corrigés pdf

[PDF] examen corrigé optique ondulatoire

[PDF] résumé cours optique ondulatoire

[PDF] physique optique cours complet

[PDF] controle optique 1ere s

[PDF] orientation scolaire et professionnelle définition

[PDF] oxydoréduction cours bac pro

[PDF] programme daeu b physique