[PDF] Untitled 8 mars 2018 Exercice 2 –





Previous PDF Next PDF



Exercices de mathématiques - Exo7

de Gauss en inversant la matrice des coefficients



Exercices du chapitre 3 avec corrigé succinct

Solution : Dans l'exercice précédent on a vu que le déterminant de en utilisant les formules de Cramer puis la méthode de Gauss.



Systèmes linéaires

Méthode 3 – méthode de Gauss ou méthode du pivot . Méthode 4 – méthode de Cramer . ... Exercices corrigés .



Untitled

8 mars 2018 Exercice 2 – K = R. Nous consid`erons l'équation linéaire : 2x1 + x2 - x3 - 4x4 = 5. 1) Qu'est ce qu'une ...



1re et 2e années

Fiches méthode. ? Exercices d'entraînement. ? Sujets de concours. ? Tous les corrigés détaillés. ? Simulations avec Scilab.



LES DÉTERMINANTS DE MATRICES

4- Exercice . 7- Expansion par cofacteurs - méthode de calcul des déterminants . ... 9- Méthode alternative pour calculer les déterminants .



Université des Sciences et de la Technologie dOran Mohamed

Exercice 4-13. 84. 4-5 Méthode de Cramer Ce document propose un recueil d'exercices corrigés d'analyse numérique adressé aux.



Chapitre 1: Calculs matriciels

la méthode de Cramer. Exercice 1.5 : On considère les matrices suivantes : ... Exercice 1.7 : a) Calculer si possible



CTU Master Enseignement des Mathématiques Statistique

Ce polycopié contient le cours les sujets d'exercice et leurs corrigés ainsi que les La ?-méthode ou l'étude asymptotique d'un estimateur obtenu par la.



RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

Cependant la méthode de résolution elle-même n'est en aucun point modifiée. Page 11. Page 11 sur 11. Exercices. Résoudre les 



Mathématiques appliquées à l'Économie et à la Gestion

Exercice 1 1 Résoudre de quatre manières différentes le système suivant (par substitution par la méthode du pivot de Gauss en inversant la matrice des coef?cients par la formule de Cramer) : ˆ 2x + y = 1 3x + 7y = 2 2 Choisir la méthode qui vous paraît la plus rapide pour résoudre selon les valeurs de a les systèmes suivants : ˆ



FORMULES DE CRAMER - touteslesmathsfr

1) Donner la dØmonstration ØlØmentaire des formules de Cramer dans le cas d™un syst?me de trois Øquations à trois 2) Enoncer et dØmontrer les formules de Cramer dans le cas gØnØral d™un syst?me de nØquations à ninconnues à partir de la thØorie gØnØrale des dØterminants (voir le document "DØterminants" sur le site



Feuille 1 : Exercices sur les systèmes linéaires quelques

3 Sinon (m 6= 0 et m 6= 1 ) le système est de Cramer et S= n 2(m2?2m?2) m(m?1) (m+1)(m?4) m(m?1) 4m+2 m(m?1) o (point) Exercice 3 a) (S) = ax+by +z = 1 x+aby +z = b x+by +az = 1 On utilise la méthode du pivot de Gauss On commence par e?ectuer une permutation des lignes de manière à avoir un pivot égal à 1 (S) ? x

  • Méthode de Résolution d'un Système Par Les Formules de Cramer

    Contexte

  • Complément

    On peut ainsi retenir l'expression des solutions par la méthode de Cramer : (1)(1)(1) {ax+by=ca?x+b?y=c?begin{cases} ax+by=c a'x+b'y=c'end{cases}{ax+by=ca?x+b?y=c?? On forme par exemple : x=x=x=?cbc?b???aba?b??frac{begin{vmatrix} c & b c'& b'end{vmatrix}}{begin{vmatrix} a & b a' & b'end{vmatrix}}????aa??bb??????????cc??bb???????=cb??...

Comment appliquer la méthode de Cramer?

Résoudre le système suivant : On peut appliquer la méthode de Cramer du fait qu?on a 3 équations et 3 inconnues mais il faut vérifier que det A est non nul. La solution du système est donnée par (-2, 1, 2) Application : Résoudre le système suivant : Solution Résolution par la méthode du pivot de Gauss

Qui a conçu la méthode de Cramer ?

La méthode de Cramer a été conçue par Gabriel Cramer, un mathématicien genévois, en 1750, il a conçu un moyen pour résoudre un système d’équations linéaires en utilisant une équation matricielle et les déterminants des matrices qui en découlent. Nous allons maintenant étudier la méthode de Cramer et son utilisation.

Comment prévenir les crampes lors des exercices ?

Une fois cet exercice réalisé, essayez de marcher sur les talons quelques minutes". N'oubliez pas de vous réhydrater en buvant de l’eau abondamment. Pour anticiper la survenue des crampes lors des exercices, il est conseillé de faire régulièrement des exercices d’étirement, de la marche ou du sport.

Qu'est-ce que le système de Cramer?

Le système AX=B (forme matricielle) est dit système de Cramer si A est une matrice carrée et det A est non nul. Dans ce cas le système de Cramer admet une solution unique vérifiant AX=B. 2- Résolution La résolution à l?aide de la méthode de Cramer n?est donc possible que dans le cas où le nombre d?équations est égal à celui des inconnues.

1

Algebre

Cours Fondements S1 et S2

Exercices Corriges

Fevrier 2018

March 8, 2018

2

Contents

1 Systemes d'equations lineaires 4

1.1 Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Matrices26

2.1 Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Espaces vectoriels35

3.1 Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Sous-Espaces Vectoriels 49

4.1 Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Applications lineaires83

5.1 Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Matrices Elementaires 112

6.1 Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3

1 Systemes d'equations lineaires

1.1 Enonces

Exercice 1{K=R. Nous considerons l'equation lineaire :x1+x2+x3+x4= 0.

1) Qu'est ce qu'une solution de cette equation ?

2) Donner l'ordre des variables ? Ce systeme est-il triangule ? Quelles en sont les variables libres ?

3) Donner les solutions de cette equation.

Exercice 2{K=R. Nous considerons l'equation lineaire : 2x1+x2x34x4= 5.

1) Qu'est ce qu'une solution de cette equation ?

2) Donner l'ordre des variables ? Ce systeme est-il triangule ? Quelles en sont les variables libres ?

3) Donner les solutions de cette equation comme somme d'une solution particuliere et des combinaisons

lineaires de 3 elements deR4.

4) Ecrire l'equation homogene associee. Quelles sont les solutions de cette equation ?

Exercice 3{K=R. Nous consideron le systeme d'equations lineaires : (E)"x

1+x2x3x4= 1

x

1+ 2x22x32x4= 0:

1) Donner un systeme trianguleE0ayant les m^emes solutions queE.

2) Quelles sont les variables libres deE0? Resoudre alorsE0.

Exercice 4{K=R. Nous considerons le systeme d'equations lineaires : (E)2 6 4x

1+x2x3x4= 1 (E1)

x

1+ 2x22x32x4= 0 (E2)

2x1+x2+x3+x4= 2 (E3):

1) Quel est l'ordre des variables du systeme lineaireE? Quel est l'ordre des equationsE1;E2;E3?

2) Donner un systeme trianguleE00ayant les m^emes solutions queE. Preciser les variables libres deE00?

3) Resoudre le systeme lineaireE.

4 Exercice 5{Nous considerons le systeme d'equations lineaires : (E)2 6 4x

1+x2+x3+x4= 3 (E1)

2x1x2+ 2x33x4= 0 (E2)

4x15x2+ 4x311x4=6 (E3):

1) Donner en utilisant avec precision l'algorithme de triangulation du cours un systeme triangule ayant les

m^emes solutions queE. Quelles sont les variables libres du systeme triangule obtenu ?

2 ) Determiner les solutions dansR4deEa l'aide de ces variables libres. Vous exprimerez ces solutions sous

forme de la somme d'un element deR4et de l'ensemble des combinaisons de deux elements deR4que l'on precisera.

3) Quelles sont alors les solutions du systeme sans second membre associe aE?

Exercice 6{Nous considerons le systeme d'equations lineaires a coecients reels : (E)2 6 4x

1x2+x3x4= 2 (E1)

2x12x2+ 3x34x4= 3 (E2)

x

1x2+x4= 3 (E3):

1) Quel est l'ordre des variables de ce systeme ? Donner en utilisant avec precision l'algorithme de

triangulation du cours un systeme triangule ayant les m^emes solutions queE. Quelles sont les variables libres

du systeme triangule obtenu ?

2 ) Determiner les solutions dansR4deEa l'aide de ces variables libres. On exprimera ces solutions sous

forme de la somme d'un element deR4et de l'ensemble des combinaisons d'elements deR4que l'on precisera.

3) M^emes questions avec le systeme d'equations lineaires :

(H)2 6 4x

1x2+x3x4= 2 (S1)

2x12x2+ 3x34x4= 3 (S2)

x

1+x2+x4= 3 (S3):

Exercice 7{K=R. Nous considerons le systeme d'equations lineaires : (E)2 6 4x

1+x2x3+x4= 1 (E1)

2x1+ 4x2+ 4x34x4= 0 (E2)

3x1+ 2x2+ 2x32x4= 4 (E3):

5

1) Quel est l'ordre des variables du systemeE? Quel est l'ordre des equationsE1;E2;E3?

2) Donner un systeme trianguleE0ayant les m^emes solutions queE. Quelles sont les variables libres de ce

systeme triangule ?

3) Resoudre le systeme d'equations lineairesE.

Exercice 8{Nous considerons le systeme d'equations lineaires : (E)2 6 4x

1+x2x3+x4= 1 (E1)

x

1+ 2x2+ 3x34x4= 0 (E2)

x

1+ 2x23x3+x4= 2 (E3):

1) Donner un systeme trianguleE0ayant les m^emes solutions queE. Quelles sont les variables libres de ce

systeme triangule ?

2) Resoudre ce systeme en exprimant ses solutions a l'aide des variables libres du systeme triangule ?

Exercice 9{Nous considerons le systeme d'equations lineaires : (E)2 6

4x3+x2+x1= 1 (E1)

2x3+ 2x2+x1= 0 (E2)

x

3+x2+ 2x1= 2 (E3):

1) Quel est l'ordre des variables du systeme lineaireE?

2) Quel est l'ordre des equationsE1;E2;E3?

3) Donner un systeme trianguleE0ayant les m^emes solutions queE.

4) Quelles sont les variables libres deE0? Quelles sont les solutions deE0? Quels sont les triplets de reels

(x1;x2;x3) de reels solutions deE?

Exercice 10{

Nous considerons le systeme de 3 equations a 4 inconnues : (E)2 6 664x

1+x2x3x4= 1 (E1)

x

1+x2+x32x4= 3 (E2)

2x1x2+ 2x3x4= 2 (E3)

3x1+ 3x33x4= 5 (E4):

6

1) Quel est l'ordre des variablesx1;x2;x3;x4de ce systeme. Trianguler ce systeme d'equations a l'aide de

l'algorithme de Gauss. Quelles sont les variables libres de ce systeme ?

2) Resoudre le systemeE. Verier les calculs.

Exercice 11{Nous considerons le systeme de 4 equations a 4 inconnues a coecients rationnels : (E)2 6 664x

1+ 2x2x3+ 2x4= 1 (E1)

2x1x2+x3+ 3x4= 1 (E2)

3x1+x2+ 5x4= 2 (E3)

x

13x2+ 2x3+x4= 0 (E4):

1) Quel est l'ordre des variablesx1;x2;x3;x4de ce systeme. Trianguler ce systeme d'equations a l'aide de

l'algorithme de Gauss. Quelles sont les variables libres de ce systeme ?

2) Trouver les quadruplets de nombres rationnels solutions du systeme (E).

3) Verier les calculs en testant une solution particuliere.

4) Resoudre le systeme :

(Eh)2 6 664x

1+ 2x2x3+ 2x4= 0 (E01)

2x1x2+x3+ 3x4= 0 (E02)

3x1+x2+ 5x4= 0 (E03)

x

13x2+ 2x3+x4= 0 (E04):

1.2 Corrections

Correction de l'exercice 1 :

1) Une solution de l'equationx1+x2+x3+x4= 0 est un quadruplet de reels (s1;s2;s3;s4) tels que

s

1+s2+s3+s4= 0.

La variablex1est la premiere variable, la variablex2la deuxieme,x3la troisieme etx4la quatrieme. L'equation

commence parx1. elle est d'ordre 1. Comme le systeme est constistue d'une seulle equation d'odre 1, l'ordre

des equations du systeme est strictement croissant. Le systeme est triangule. La variablex1est la seule

7 variable de t^ete. Les variablesx2;x3;x4sont les variables libres.

2) Le quadruplet de reels (x1;x2;x3;x4) est une solution de notre equation si et seulement si :

x

1=x2x3x4:

Ainsi , l'ensembleSdes solutions est :

S=f(x2x3x4;x2;x3;x4) tels quex2;x3;x42Rg;

=f+x2(1;1;0;0) +x3(1;0;1;0) +x4(1;0;0;1)) tels quex2;x3;x42Rg:

Ainsi, les solutions de notre equation sont l toutes les combinaisons lineaires des trois elements deR4:

(1;1;0;0), (1;0;1;0) et (1;0;0;1).

Correction de l'exercice 2 :

1) Une solution de l'equation 2x1+x2x34x4= 5 est un quadruplet de reels (s1;s2;s3;s4) tels que

2s1+s2s34s4= 5.

La variablex1est la premiere variable, la variablex2la deuxieme,x3la trosieme etx4la quatrieme. L'equation

commence parx1. elle est d'ordre 1. Comme le systeme est constistue d'une seulle equation d'odre 1, l'ordre

des equations du systeme est strictement croissant. Le systeme est triangule. La variablex1est la seule

variable de t^ete. Les variablesx2;x3;x4sont les variables libres.

2) Le quadruplet de reels (x1;x2;x3;x4) est une solution de notre equation si et seulement si :

x 1=12 x2+12 x3+ 2x4+52

Ainsi , l'ensembleSdes solutions est :

S=f(12

x2+12 x3+ 2x4+52 ;x2;x3;x4) tels quex2;x3;x42Rg; =f(52 ;0;0;0) +x2(12 ;1;0;0) +x3(12 ;0;1;0) +x4(2;0;0;1)) tels quex2;x3;x42Rg: 8 Ainsi, les solutions de notre equation sont les sommes du quadruplet de reels ( 52
;0;0;0) avec toutes les com- binaisons lineaires des trois elements deR4: (12 ;1;0;0), (12 ;0;1;0) et (2;0;0;1).

3) L'equation homogene associee est

2x1+x2x34x4= 5:

Ses solutions sont :

fx2(12 ;1;0;0) +x3(12 ;0;1;0) +x4(2;0;0;1)) tels quex2;x3;x42Rg:

Correction de l'exercice 3 :

1) NotonsEle systeme :

(E)"x

1+x2x3x4= 1 (E1)

x

1+ 2x22x32x4= 0 (E2):

Les variables de ce systeme sontx1;x2;x3;x4ordonnees naturellement (x1est la premiere variable, ...). Les

equationsE1etE2du systemeEsont d'ordre 1. Notre systeme est donc ordonne. Le systeme suivant a les m^emes solutions que (E) : (E0)"x

1+x2x3x4= 1 (E1)

x

2x3x4=1 (E2E1):

L'equationE1est d'ordre 1 de variable de t^etex1, l'equationE2E1est d'ordre 2 de variable de t^etex2.

Ainsi, le systemeE0est triangule. Ses variables libres sontx3etx4.

2) Pour resoudreE0, doncE, il sut de remonter les equations deE0. La derniere equation deE0donne

l'expression dex2a l'aide des variables libresx3etx4: x

2=x3+x41

9 Remplaconsx2par sa valeur dans les equations precedentes, on obtient : x

1+x3+x41x3x4= 1;

soit : x

11 = 1:

Nous obtenons donc l'expression dex1a l'aide des variables libresx3etx4:x1= 2. Ainsi, l'ensembleSdes solutions est :

S=f(2;x3+x41;x3;x4) tels quex3;x42Rg;

S=f(2;1;0;0) +x3(0;1;1;0) +x4(0;1;0;1) tels quex3;x42Rg:

Pour verier, nous constatons bien que (2;1;0;0) est une solution deEet que (0;1;1;0) et (0;1;0;1) sont

solutions du systeme sans second membre associe aE: (E0)"x

1+x2x3x4= 0

x

1+ 2x22x32x4= 0:

Correction de l'exercice 4 :

1) Le systemeEa quatre variables. L'ordre des variables du systemeEest l'ordre naturel :x1est la premiere

variable,x2la deuxieme,x3la troisieme etx4la quatrieme. Les coecients dansE1,E2etE3dex1sont non nuls. Les trois equationsE1,E2etE3sont donc d'ordre 1. Le systemeEest donc ordonne.

2) Demarrons l'algorithme de triangulation.

Etape 1: Utilisons (E1) pour faire monter l'ordre des equations suivantes. Le systeme suivant a m^emes

solutions queE: (E0)2 6 4x

1+x2x3x4= 1 (E1)

x

2x3x4=1 (E02=E2E1)

x2+ 3x3+ 3x4= 0 (E03=E32E1): 10 Les equationsE1;E02;E03sont respectivement d'ordre 1;2;2. Ce syteme est ordonne.

Etape 2: Utilisons la deuxieme equation pour faire monter l'ordre de la troisieme. Le systeme suivant a

m^emes solutions queE: (E00)2 6 4x

1+x2x3x4= 1 (E1)

x

2x3x4=1 (E02)

2x3+ 2x4=1 (E003=E03+E02):

Lesequations de ce dernier systeme sont d'ordre respectivement 1;2;3. Ce systeme est triangule. L'algorithme

de triangulation aboutit ici en deux etapes. Les variables de t^ete du systeme triangule precedentE00sontx1

pour la premiere equation,x2pour la deuxieme equation etx3pour la troisieme equation. Ainsi,x4est la seule variable libre de ce systeme triangule.

3) Resolvons le systeme trianguleE00qui a m^emes solutions que notre systemeE. La derniere quation de

E

00donne :

2x3=12x4; x3=12

x4:

Il vient alors :

x

2=x3+x41 =32

Puis :

x

1=x2+x3+x4+ 1 =32

12 + 1 = 2:

Les solutions deEsont donc l'ensemble :

f(2;32 ;12 x4;x4) tels quex42Rg; ou encore : f(2;32 ;12 ;0) +x4(0;0;1;1) tels quex42Rg; 11

Correction de l'exercice 5 :

1) L'ordre des variablesx1;x2;x3;x4est l'ordre naturel. Les trois equations deEsont d'ordre 1. Le

systeme est donc ordonne. Demarrons l'algorithme de triangulation. Etape 1: UtilisonsE1pour faire monter l'ordre des equations suivantes. Le systeme suivant a m^emes solutions queE: (E0)2 6 4x

1+x2+x3+x4= 3 (E1)

3x25x4=6 (E02=E22E1)

9x215x4=18 (E03=E34E1):

Les equationsE1;E02;E03sont respectivement d'ordre 1;2;2. Ce systeme est ordonne.

Etape 2: Utilisons la deuxieme equation pour faire monter l'ordre de la troisieme. Le systeme suivant a les

m^emes solutions queE: 2 6 4x

1+x2+x3+x4= 3 (E1)

3x25x4=6 (E02=E22E1)

0 = 0 (E033E02):

"Nettoyons" le systeme obtenu en enlevant l'equation 0 = 0. On obtient un systeme ayant les m^emes solutions

queE: (E00)"x

1+x2+x3+x4= 3 (E1)

3x25x4=6 (E02=E22E1):

Les equations de ce systeme sont d'ordre respectivement 1;2. Ce systeme est triangule. Le premier algorithme

est termine.quotesdbs_dbs27.pdfusesText_33
[PDF] méthode de cramer matrice 4x4

[PDF] méthode de cramer 4 inconnues

[PDF] méthode de cramer 3 inconnues

[PDF] méthode de cramer 2 inconnues

[PDF] couverture de cahier ? imprimer

[PDF] travail couverture cahier maternelle

[PDF] couverture cahier arts plastiques

[PDF] décoration cahier maternelle

[PDF] couverture cahier art plastique 6eme

[PDF] cahier art plastique 6ème

[PDF] cahier d'art plastique original

[PDF] couverture cahier maternelle ps

[PDF] datation absolue svt

[PDF] interview metteur en scène théâtre

[PDF] en quoi le théâtre se différencie t il des autres genres littéraires