[PDF] Systèmes déquations linéaires





Previous PDF Next PDF



Annexe C : Matrices déterminants et systèmes déquations linéaires

4 + 2y. 3. + 7y = –2. On a obtenu une équation à une seule inconnue qu'on peut résoudre La résolution du système



Ift 2421 Chapitre 3 Résolution des systèmes déquations linéaires

4. Un vecteur est une matrice dont l'une des dimensions est 1. Méthode de Cramer ... inconnues du système pour avoir le pivot maximum en valeur absolue.



résolution des systèmes déquations à 2 inconnues par la méthode

PAR LA MÉTHODE DES DÉTERMINANTS DE CRAMER. Système étudié à titre d'exemple: S{3x+4y=5. 6x+7y=8}. Appelons A la colonne (3. 6) B la colonne (4.



CHAPITRE 1

Un système linéaire de 2 équations à 2 inconnues est un ensemble de deux. ( )S équations de la forme : Résolution générale par la méthode de Cramer.



Systèmes déquations linéaires

de Gauss en inversant la matrice des coefficients



LES DÉTERMINANTS DE MATRICES

4. 7- Expansion par cofacteurs - méthode de calcul des déterminants . 9- Méthode alternative pour calculer les déterminants .



METHODE DU PIVOT DE GAUSS

Le cas des systèmes de Cramer à deux ou trois inconnues a été traité dans le chapitre 4 page 45



Chapitre 1: Calculs matriciels

la méthode de Cramer. a) Donner le type des 4 premières matrices. ... nombre d'équations est égal au nombre d'inconnues et si la matrice des coeffi-.



III. Systèmes d équations du 1er degré

Nous allons le résoudre par la méthode des combinaisons : 4 y x. 2°. S = }. {)97(. -. -. ? On isole une des inconnues dans une des équations au choix.



Fiche explicative de la leçon : Règle de Cramer - Nagwa

1 Résoudre de quatre manières différentes le système suivant (par substitution par la méthode du pivot de Gauss en inversant la matrice des coef?cients par la formule de Cramer) : ˆ 2x + y = 1 3x + 7y = 2 2 Choisir la méthode qui vous paraît la plus rapide pour résoudre selon les valeurs de a les systèmes suivants : ˆ ax + y = 2



HAPITRE Systèmes d'équations

Résolution générale par la méthode de Cramer C'est le mathématicien suisse Gabriel Cramer (1704-1752) qui a introduit l'expression générale de la solution d'un système linéaire de n équations à n inconnues



FORMULES DE CRAMER - touteslesmathsfr

2) Enoncer et dØmontrer les formules de Cramer dans le cas gØnØral d™un syst?me de nØquations à ninconnues à partir de la thØorie gØnØrale des dØterminants (voir le document "DØterminants" sur le site touteslesmaths fr) 1 Syst?mes de trois Øquations à trois inconnues



Searches related to méthode de cramer 4 inconnues PDF

Chapitre 4 Systèmes linéaires L’objectif de ce court chapitre est d’introduire et de résoudre des systèmes de n équations à p inconnues La technique principale appelée méthode du Pivot de Gauss est très importante et on s’en servira beaucoup notamment dans le cadre de l’algèbre linéaire (et donc des matrices) 1 Vocabulaire

  • Méthode de Résolution d'un Système Par Les Formules de Cramer

    Contexte

  • Complément

    On peut ainsi retenir l'expression des solutions par la méthode de Cramer : (1)(1)(1) {ax+by=ca?x+b?y=c?begin{cases} ax+by=c a'x+b'y=c'end{cases}{ax+by=ca?x+b?y=c?? On forme par exemple : x=x=x=?cbc?b???aba?b??frac{begin{vmatrix} c & b c'& b'end{vmatrix}}{begin{vmatrix} a & b a' & b'end{vmatrix}}????aa??bb??????????cc??bb???????=cb??...

Qui a conçu la méthode de Cramer ?

La méthode de Cramer a été conçue par Gabriel Cramer, un mathématicien genévois, en 1750, il a conçu un moyen pour résoudre un système d’équations linéaires en utilisant une équation matricielle et les déterminants des matrices qui en découlent. Nous allons maintenant étudier la méthode de Cramer et son utilisation.

Comment exprimer la valeur d'une inconnue ?

On peut ainsi retenir l'expression des solutions par la méthode de Cramer : La valeur d'une inconnue s'exprime comme une fraction dont le dénominateur est le déterminant du système, et dont le numérateur est le déterminant qu'on en déduit en remplaçant la colonne des coefficients des termes constants avec le système

Quels sont les systèmes de deux équations à deux inconnues?

Tout étudiant a déjà rencontré par exemple des systèmes de deux équations à deux inconnues pour lesquelles deux méthodes de résolution ont été présentées: par substitution ou combinaisons linéaires. On verra dans la suite qu’on va généraliser la méthode de combinaisons linéaires.

Systèmes déquations linéaires Exo7

Systèmes d"équations linéaires

Corrections d"Arnaud Bodin

Exercice 11.Résoudre de quatre manières dif férentesle système sui vant(par substitution, par la méthode du pi votde

Gauss, en inversant la matrice des coefficients, par la formule de Cramer) :

2x+y=1

3x+7y=2

2.

Choisir la méthode qui v ousparaît la plus rapide pour résoudre, selon les v aleursde a, les systèmes

suivants : ax+y=2 (a2+1)x+2ay=1 (a+1)x+ (a1)y=1 (a1)x+ (a+1)y=1

Résoudre les systèmes suivants

8< :x+yz=0 xy=0 x+4y+z=08 :x+y+2z=5 xyz=1 x+z=38 :3xy+2z=a x+2y3z=b x+2y+z=c

Trouver les solutions de

8>>< >:3x+2z=0

3y+z+3t=0

x+y+z+t=0

2xy+zt=0

Étudier l"existence de solutions du système : 8< :ax+by+z=1 x+aby+z=b x+by+az=1: 1 Discuter et résoudre suivant les valeurs des réelsl,a,b,c,dle système : (S)8 >:(1+l)x+y+z+t=a x+(1+l)y+z+t=b x+y+(1+l)z+t=c x+y+z+(1+l)t=d Z 4

2P(x)dx=aP(2)+bP(3)+gP(4):

Indication pourl"exer cice6 NÉcrire les polynômes sous la formeP(x) =ax3+bx2+cx+d. CalculerR4

2P(x)dxd"une part etaP(2)+

bP(3)+gP(4)d"autre part. L"identification conduit à un système linéaire à quatre équations, d"inconnues

a;b;g.3

Correction del"exer cice1 N1.(a) Par substitution.La première équation s"écrit aussiy=12x. On remplace maintenantydans la

deuxième équation

3x+7y=2=)3x+7(12x) =2=)11x=9=)x=911

Onendéduity:y=12x=12911

=711 . Lasolutiondecesystèmeestdonclecouple(911 ;711 N"oubliez pas de vérifier que votre solution fonctionne ! (b)Par le pivot de Gauss.On garde la ligneL1et on remplace la ligneL2par 2L23L1:

2x+y=1

3x+7y=2()2x+y=1

11y=7 Onobtientunsystèmetriangulaire: onendéduity=711 etalorslapremièrelignepermetd"obtenir x=911 (c)Par les matrices.En terme matriciel le système s"écrit

AX=YavecA=2 1

3 7 X=x y Y=1 2 On trouve la solution du système en inversant la matrice :

X=A1Y:

L"inverse d"une matrice 22 se calcule ainsi

siA=a b c d alorsA1=1adbc db c a Il faut bien sûr que le déterminant detA=a b c d =adbcsoit différent de 0.

Ici on trouve

A 1=111 71
3 2 etX=A11 2 =111 9 7

(d)Par les formules de Cramer.Les formules de Cramer pour un système de deux équations sont les

suivantes si le déterminant vérifieadbc6=0 : ax+by=e cx+dy=f=)x= e b f d a b c d ety= a e c f a b c d

Ce qui donne ici :

x= 1 1 2 7 2 1 3 7 911
ety= 2 1 32
2 1 3 7 =711 2. (a)

A vanttout on re gardes"il e xisteune solution unique, c"est le cas si et seulement si le déterminant

est non nul. Pour le premier système le déterminant esta1 a

2+1 2a

=a21 donc il y a une unique solution si et seulement sia6=1.

Biensûrtouteslesméthodesconduisentaumêmerésultat! Parexempleparsubstitution, enécrivant

la première ligney=2ax, la deuxième ligne devient(a2+1)x+2a(2ax) =1. On en déduit que sia6=1 alorsx=4a1a

21puisy=2a2+a2a

21.
4 Traitons maintenant les cas particuliers. Sia=1 alors le système devient :x+y=2

2x+2y=1

Mais on ne peut avoir en même tempsx+y=2 etx+y=12 . Donc il n"y a pas de solution.

Sia=1 alors le système devient :x+y=2

2x2y=1et il n"y a pas de solution.

(b)

Ici le déterminant est

a+1a1 a1a+1 = (a+1)2(a1)2=4a. Sia6=0 alors on trouve la solution unique(x;y). Par exemple avec la formule de Cramer x= 1a1 1a+1

4a=12aety=

a+1 1 a1 1

4a=12a:

Sia=0 il n"y a pas de solution.Correction del"exer cice2 N1.Remarquons que comme le système est homogène (c"est-à-dire les coef ficientsdu second membre sont

nuls) alors(0;0;0)est une solution du système. Voyons s"il y en a d"autres. Nous faisons semblant

de ne pas voir que la seconde ligne impliquex=yet que le système est en fait très simple à résoudre.

Nous allons appliquer le pivot de Gauss en faisant les opérations suivantes sur les lignesL2 L2L1et

L

3 L3L1:

8< :x+yz=0 xy=0 x+4y+z=0()8 :x+yz=0

2y+z=0

3y+2z=0

On fait maintenantL3 2L3+3L2pour obtenir :

8< :x+yz=0

2y+z=0

7z=0 En partant de la dernière ligne on trouvez=0, puis en remontanty=0, puisx=0. Conclusion l"unique solution de ce système est(0;0;0). 2.

On applique le pi votde Gauss L2 L2L1etL3 L3L1:

8< :x+y+2z=5 xyz=1 x+z=3()8 :x+y+2z=5

2y3z=4

yz=2

PuisL3 2L3L2pour obtenir un système équivalent qui est triangulaire donc facile à résoudre :

8< :x+y+2z=5

2y3z=4

z=0()8 :x=3 y=2 z=0 On n"oublie pas de vérifier que c"est une solution du système initial. 3. On f aitles opérations L2 3L2+L1etL3 3L3L1pour obtenir : 8< :3xy+2z=a x+2y3z=b x+2y+z=c()8 :3xy+2z=a

5y7z=3b+a

7y+z=3ca

5 Puis on faitL3 5L37L2, ce qui donne un système triangulaire : 8< :3xy+2z=a

5y7z=3b+a

54z=5(3ca)7(3b+a)

En partant de la fin on en déduit :z=154

(12a21b+15c)puis en remontant cela donne 8< :x=118 (8a+5bc) y=118 (2a+b+7c) z=118 (4a7b+5c)Correction del"exer cice3 NOn commence par simplifier le système : on place la ligne L3en première position pour le pivot de Gauss ; on réordonne les v ariablesdans l"ordre : y;t;x;zpour profiter des lignes déjà simples. 8>>< >:y+t+x+z=0

3y+3t+z=0

yt+2x+z=0

3x+2z=0

On commence le pivot de Gauss avec les opérationL2 L23L1etL3 L3+L1pour obtenir : 8>>< >:y+t+x+z=0

3x2z=0

3x+2z=0

3x+2z=0

Les 3 dernières lignes sont identiques, on se ramène donc à un système avec 2 équations et 4 inconnues :

y+t+x+z=0

3x+2z=0

Nous choisissonsxetycomme paramètres, alorsz=32 xett=xyz=12 xy. Les solutions du système sont donc les x;y;z=32 x;t=12

xyjx;y2RCorrection del"exer cice4 N1.Pour éviter d"a voirà di viserpar aon réordonne nos lignes puis on applique la méthode du pivot :

8< :x+by+az=1L1x+aby+z=bL2ax+by+z=1L3()8 :x+by+az=1L1b(a1)y+ (1a)z=b1L2 L2L1b(1a)y+ (1a2)z=1aL3 L3aL1 On fait ensuiteL3 L3+L2pour obtenir un système triangulaire équivalent au système initial : 8< :x+by+az=1 b(a1)y+ (1a)z=b1 (2aa2)z=ba 6

2.Nous allons maintenant discuter de l"e xistencedes solutions. Remarquons d"abord que 2 aa2=

(a1)(a+2). Donc sia6=1 eta6=2 alors 2aa26=0 doncz=ab(a1)(a+2). On a donc trouvé la valeur dez. La deuxième ligne du système triangulaire estb(a1)y+(1a)z=b1 on sait déjà a16=0. Sib6=0 alors, en reportant la valeur dezobtenue, on trouve la valeury=b1(1a)zb(a1). Puis avec la première ligne on en déduit aussix=1byaz. Donc sia6=1 eta6=2 etb6=0 alors il existe une unique solution(x;y;z). 3. Il f autmaintenant s"occuper des cas particuliers. (a) Si a=1 alors notre système triangulaire devient : 8< :x+by+z=1 0=b1 0=b1 Sib6=1 il n"y a pas de solution. Sia=1 etb=1 alors il ne reste plus que l"équationx+y+z=1. On choisit par exempley;zcomme paramètres, l"ensemble des solutions est (1yz;y;z)jy;z2R: (b)

Si a=2 alors le système triangulaire devient :

8< :x+by2z=1

3by+3z=b1

0=b+2 Donc sib6=2 il n"y a pas de solution. Sia=2 etb=2 alors le système est x2y2z=1

2y+z=1

Si l"on choisitycomme paramètre alors il y a une infinité de solutions (12y;y;12y)jy2R: (c) Enfin si b=0 alors la deuxième et troisième ligne du système triangulaire sont :(1a)z=1 et (2aa2)z=a. Doncz=11a=a2aa2(le sous-casb=0 eta=1 n"a pas de solution). Dans tous les cas il n"y a pas de solution. (d)

Conclusion :

Si a6=1 eta6=2 etb6=0, c"est un système de Cramer : il admet une unique solution. Si a=1 etb6=1 il n"y a pas de solution (le système n"est pas compatible). Si a=1 etb=1 il y a une infinité de solutions (qui forment un plan dansR3).

Si a=2 etb6=2 il n"y a pas de solution.

Si a=2 etb=2 il y a une infinité de solutions (qui forment une droite dansR3).

Si b=0 il n"y a pas de solution.Correction del"exer cice5 N1.On commence par simplifie rle système en ef fectuantles opérations sui vantessur les lignes : L1

L

1L4,L2 L2L4,L3 L3L4:

(S)()8 >:lxlt=ad lylt=bd lzlt=cd x+y+z+ (1+l)t=d 7

2.T raitonsle cas particulier l=0. Sil=0 alors le système n"a des solutions que sia=b=c=d. Les

solutions sont alors les(x;y;z;t)qui vérifiex+y+z+t=d. (C"est un espace de dimension 3 dansR4.) 3. Si l6=0 alors on peut faire l"opération suivante sur la dernière ligne :L4 L41l L11l L21l

L3pour

obtenir : (S)()8 >:lxlt=ad lylt=bd lzlt=cd (l+4)t=d1l (a+b+c3d) 4. Cas particulier l=4. La dernière ligne devient 0=a+b+c+d. Donc sia+b+c+d6=0 alors il n"y a pas de solutions. Sil=4 eta+b+c+d=0 alors existe une infinité de solutions : tad4 ;tbd4 ;tcd4 ;t jt2R 5. Cas général : l6=0 etl6=4. On calcule d"abordt=1l+4d1l (a+b+c3d)et en remplaçant par la valeur detobtenue on en déduit les valeurs pourx=t+1l (ad);y=t+1l (bd);z=t+1l (cd).

Il existe donc une solution unique :

:Correction del"exer cice6 NNotonsP(x) =ax3+bx2+cx+dun polynôme de degré63. 1.

T outd"abord calculons l"intégrale :

Z 4

2P(x)dx=

ax44 +bx33 +cx22 +dx 4 2 =60a+563 b+6c+2d: 2.

D"autre part

aP(2)+bP(3)+gP(4) =a8a+4b+2c+d+b27a+9b+3c+d+g64a+16b+4c+d: Donc aP(2)+bP(3)+gP(4) = (8a+27b+64g)a+(4a+9b+16g)b+(2a+3b+4g)c+(a+b+g)d: 3.

Pour a voirl"ég alité

R4

2P(x)dx=aP(2)+bP(3)+gP(4)quelque soit les coefficientsa;b;c;dil faut et

il suffit que b+6c+2d ce qui équivaut à 8>>< >:a+b+g=2

2a+3b+4g=6

4a+9b+16g=563

8a+27b+64g=60

De façon surprenante ce système à 3 inconnues et 4 équations a une solution unique : a=13 ;b=43 ;g=13 :8quotesdbs_dbs33.pdfusesText_39
[PDF] méthode de cramer 3 inconnues

[PDF] méthode de cramer 2 inconnues

[PDF] couverture de cahier ? imprimer

[PDF] travail couverture cahier maternelle

[PDF] couverture cahier arts plastiques

[PDF] décoration cahier maternelle

[PDF] couverture cahier art plastique 6eme

[PDF] cahier art plastique 6ème

[PDF] cahier d'art plastique original

[PDF] couverture cahier maternelle ps

[PDF] datation absolue svt

[PDF] interview metteur en scène théâtre

[PDF] en quoi le théâtre se différencie t il des autres genres littéraires

[PDF] question qu on pourrait poser a un acteur

[PDF] methode de dichotomie analyse numerique