[PDF] Systèmes déquations linéaires





Previous PDF Next PDF



RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

Méthode des combinaisons linéaires . Solution d'un système d'équations ... 1 2 est une solution du système d'équations linéaires. 2 3 8.



SYSTÈMES DÉQUATIONS ET DROITES

Dans ce chapitre on verra deux méthodes permettant de résoudre de tels systèmes. Partie 1 : Méthode de substitution. Méthode : Résoudre un système d'équations 



Titre : METHODES DADDITION ET DE CRAMER

Cette méthode est aussi appelée méthode des combinaisons ou méthode de réduction au même coefficient. Résoudre le système suivant : 3 x + 2 y = 10 (1). 4 x - y 



SYSTEMES DEQUATIONS

Méthode : Résoudre un système d'équations pas la méthode des combinaisons d'éliminer une inconnue par soustraction ou addition des deux équations.



EQUATIONS DE DROITES SYSTEMES DEQUATIONS

Méthode de résolution par substitution : on vérifie que le système a une seule solution en écrivant les deux équations réduites. on a alors isolé l' inconnue y.



CHAPITRE 1 Systèmes déquations et dinéquations linéaires I

La solution du système d'après le graphique est (3 ; -1). x 0 3. Y -2 -1. Page 2. b. Résolution par substitution.



FICHE PÉDAGOGIQUE DE PRÉPARATION DUNE LEÇON Classe

Pour résoudre un système de deux équations du premier degré à deux inconnues par combinaison linéaire on procède comme dans l'activité suivante. 1.1 Activité.



Untitled

8 mars 2018 solution particuli`ere (12



Ift 2421 Chapitre 3 Résolution des systèmes déquations linéaires

Résoudre L . y = b par substitution avant. 2. Résoudre U . x = y par substitution arrière.



Systèmes déquations linéaires

Systèmes d'équations linéaires. Corrections d'Arnaud Bodin. Exercice 1. 1. Résoudre de quatre manières différentes le système suivant (par substitution 



THÈSE - Archive ouverte HAL

Un couple de nombres qui vérifie les deux équations est appelé solution du système Ici le coupe (1 ; 2) est solution En effet : 2×1?2=0 3×1?4×2=?5 Dans ce chapitre on verra deux méthodes permettant de résoudre de tels systèmes Partie 1 : Méthode de substitution



Searches related to résoudre un système d+équation par combinaison PDF

Title: comment resoudre un systeme - methode par combinaison pdf Author: swiners Created Date: 6/28/2019 9:49:55 AM

  • Introduction

    La seconde méthode élémentaire de résolution des systèmes d'équations linéaires est la méthode par combinaisons. Elle consiste à manipuler les différentes lignes du système, en les ajoutant, les multipliant, les soustrayant, pour éliminer des termeset résoudre le système.

  • Exemple

    Résolution détaillée

Comment résoudre un système d’équation ?

Pour résoudre ce système d‘équation, il faut faire appel à l‘une des méthodes existantes. On optera ici pour la méthode de Galerkin connue par la simplicité de sa formulation et la généralisation de son application. III.6.2. Application de la méthode de Galerkin

Comment résoudre les deux équations?

Les deux équations forment un système d’équations du premier degré à deux inconnues.Sa résolution est assez simple, il suf?t de constater que les seconds membres des deux équations sont égaux.On peut développer de la façon sui- vante:

Comment résoudre un système d’équations à deux variables?

• Lorsqu’un problème comprend deux inconnues, un système d’équations à deux variables peut permettre de le résoudre. • our trouver la solution anément les équations. • On peut résoudre un système d’équations à l’aide d’une able de valeurs ou d’un graphique. he la solution du système d’équations : H 1 +5

Comment résoudre un système d'équations linéaires ?

La seconde méthode élémentaire de résolution des systèmes d'équations linéaires est la méthode par combinaisons. Elle consiste à manipuler les différentes lignes du système, en les ajoutant, les multipliant, les soustrayant, pour éliminer des termes et résoudre le système.

Systèmes déquations linéaires Exo7

Systèmes d"équations linéaires

Corrections d"Arnaud Bodin

Exercice 11.Résoudre de quatre manières dif férentesle système sui vant(par substitution, par la méthode du pi votde

Gauss, en inversant la matrice des coefficients, par la formule de Cramer) :

2x+y=1

3x+7y=2

2.

Choisir la méthode qui v ousparaît la plus rapide pour résoudre, selon les v aleursde a, les systèmes

suivants : ax+y=2 (a2+1)x+2ay=1 (a+1)x+ (a1)y=1 (a1)x+ (a+1)y=1

Résoudre les systèmes suivants

8< :x+yz=0 xy=0 x+4y+z=08 :x+y+2z=5 xyz=1 x+z=38 :3xy+2z=a x+2y3z=b x+2y+z=c

Trouver les solutions de

8>>< >:3x+2z=0

3y+z+3t=0

x+y+z+t=0

2xy+zt=0

Étudier l"existence de solutions du système : 8< :ax+by+z=1 x+aby+z=b x+by+az=1: 1 Discuter et résoudre suivant les valeurs des réelsl,a,b,c,dle système : (S)8 >:(1+l)x+y+z+t=a x+(1+l)y+z+t=b x+y+(1+l)z+t=c x+y+z+(1+l)t=d Z 4

2P(x)dx=aP(2)+bP(3)+gP(4):

Indication pourl"exer cice6 NÉcrire les polynômes sous la formeP(x) =ax3+bx2+cx+d. CalculerR4

2P(x)dxd"une part etaP(2)+

bP(3)+gP(4)d"autre part. L"identification conduit à un système linéaire à quatre équations, d"inconnues

a;b;g.3

Correction del"exer cice1 N1.(a) Par substitution.La première équation s"écrit aussiy=12x. On remplace maintenantydans la

deuxième équation

3x+7y=2=)3x+7(12x) =2=)11x=9=)x=911

Onendéduity:y=12x=12911

=711 . Lasolutiondecesystèmeestdonclecouple(911 ;711 N"oubliez pas de vérifier que votre solution fonctionne ! (b)Par le pivot de Gauss.On garde la ligneL1et on remplace la ligneL2par 2L23L1:

2x+y=1

3x+7y=2()2x+y=1

11y=7 Onobtientunsystèmetriangulaire: onendéduity=711 etalorslapremièrelignepermetd"obtenir x=911 (c)Par les matrices.En terme matriciel le système s"écrit

AX=YavecA=2 1

3 7 X=x y Y=1 2 On trouve la solution du système en inversant la matrice :

X=A1Y:

L"inverse d"une matrice 22 se calcule ainsi

siA=a b c d alorsA1=1adbc db c a Il faut bien sûr que le déterminant detA=a b c d =adbcsoit différent de 0.

Ici on trouve

A 1=111 71
3 2 etX=A11 2 =111 9 7

(d)Par les formules de Cramer.Les formules de Cramer pour un système de deux équations sont les

suivantes si le déterminant vérifieadbc6=0 : ax+by=e cx+dy=f=)x= e b f d a b c d ety= a e c f a b c d

Ce qui donne ici :

x= 1 1 2 7 2 1 3 7 911
ety= 2 1 32
2 1 3 7 =711 2. (a)

A vanttout on re gardes"il e xisteune solution unique, c"est le cas si et seulement si le déterminant

est non nul. Pour le premier système le déterminant esta1 a

2+1 2a

=a21 donc il y a une unique solution si et seulement sia6=1.

Biensûrtouteslesméthodesconduisentaumêmerésultat! Parexempleparsubstitution, enécrivant

la première ligney=2ax, la deuxième ligne devient(a2+1)x+2a(2ax) =1. On en déduit que sia6=1 alorsx=4a1a

21puisy=2a2+a2a

21.
4 Traitons maintenant les cas particuliers. Sia=1 alors le système devient :x+y=2

2x+2y=1

Mais on ne peut avoir en même tempsx+y=2 etx+y=12 . Donc il n"y a pas de solution.

Sia=1 alors le système devient :x+y=2

2x2y=1et il n"y a pas de solution.

(b)

Ici le déterminant est

a+1a1 a1a+1 = (a+1)2(a1)2=4a. Sia6=0 alors on trouve la solution unique(x;y). Par exemple avec la formule de Cramer x= 1a1 1a+1

4a=12aety=

a+1 1 a1 1

4a=12a:

Sia=0 il n"y a pas de solution.Correction del"exer cice2 N1.Remarquons que comme le système est homogène (c"est-à-dire les coef ficientsdu second membre sont

nuls) alors(0;0;0)est une solution du système. Voyons s"il y en a d"autres. Nous faisons semblant

de ne pas voir que la seconde ligne impliquex=yet que le système est en fait très simple à résoudre.

Nous allons appliquer le pivot de Gauss en faisant les opérations suivantes sur les lignesL2 L2L1et

L

3 L3L1:

8< :x+yz=0 xy=0 x+4y+z=0()8 :x+yz=0

2y+z=0

3y+2z=0

On fait maintenantL3 2L3+3L2pour obtenir :

8< :x+yz=0

2y+z=0

7z=0 En partant de la dernière ligne on trouvez=0, puis en remontanty=0, puisx=0. Conclusion l"unique solution de ce système est(0;0;0). 2.

On applique le pi votde Gauss L2 L2L1etL3 L3L1:

8< :x+y+2z=5 xyz=1 x+z=3()8 :x+y+2z=5

2y3z=4

yz=2

PuisL3 2L3L2pour obtenir un système équivalent qui est triangulaire donc facile à résoudre :

8< :x+y+2z=5

2y3z=4

z=0()8 :x=3 y=2 z=0 On n"oublie pas de vérifier que c"est une solution du système initial. 3. On f aitles opérations L2 3L2+L1etL3 3L3L1pour obtenir : 8< :3xy+2z=a x+2y3z=b x+2y+z=c()8 :3xy+2z=a

5y7z=3b+a

7y+z=3ca

5 Puis on faitL3 5L37L2, ce qui donne un système triangulaire : 8< :3xy+2z=a

5y7z=3b+a

54z=5(3ca)7(3b+a)

En partant de la fin on en déduit :z=154

(12a21b+15c)puis en remontant cela donne 8< :x=118 (8a+5bc) y=118 (2a+b+7c) z=118 (4a7b+5c)Correction del"exer cice3 NOn commence par simplifier le système : on place la ligne L3en première position pour le pivot de Gauss ; on réordonne les v ariablesdans l"ordre : y;t;x;zpour profiter des lignes déjà simples. 8>>< >:y+t+x+z=0

3y+3t+z=0

yt+2x+z=0

3x+2z=0

On commence le pivot de Gauss avec les opérationL2 L23L1etL3 L3+L1pour obtenir : 8>>< >:y+t+x+z=0

3x2z=0

3x+2z=0

3x+2z=0

Les 3 dernières lignes sont identiques, on se ramène donc à un système avec 2 équations et 4 inconnues :

y+t+x+z=0

3x+2z=0

Nous choisissonsxetycomme paramètres, alorsz=32 xett=xyz=12 xy. Les solutions du système sont donc les x;y;z=32 x;t=12

xyjx;y2RCorrection del"exer cice4 N1.Pour éviter d"a voirà di viserpar aon réordonne nos lignes puis on applique la méthode du pivot :

8< :x+by+az=1L1x+aby+z=bL2ax+by+z=1L3()8 :x+by+az=1L1b(a1)y+ (1a)z=b1L2 L2L1b(1a)y+ (1a2)z=1aL3 L3aL1 On fait ensuiteL3 L3+L2pour obtenir un système triangulaire équivalent au système initial : 8< :x+by+az=1 b(a1)y+ (1a)z=b1 (2aa2)z=ba 6

2.Nous allons maintenant discuter de l"e xistencedes solutions. Remarquons d"abord que 2 aa2=

(a1)(a+2). Donc sia6=1 eta6=2 alors 2aa26=0 doncz=ab(a1)(a+2). On a donc trouvé la valeur dez. La deuxième ligne du système triangulaire estb(a1)y+(1a)z=b1 on sait déjà a16=0. Sib6=0 alors, en reportant la valeur dezobtenue, on trouve la valeury=b1(1a)zb(a1). Puis avec la première ligne on en déduit aussix=1byaz. Donc sia6=1 eta6=2 etb6=0 alors il existe une unique solution(x;y;z). 3. Il f autmaintenant s"occuper des cas particuliers. (a) Si a=1 alors notre système triangulaire devient : 8< :x+by+z=1 0=b1 0=b1 Sib6=1 il n"y a pas de solution. Sia=1 etb=1 alors il ne reste plus que l"équationx+y+z=1. On choisit par exempley;zcomme paramètres, l"ensemble des solutions est (1yz;y;z)jy;z2R: (b)

Si a=2 alors le système triangulaire devient :

8< :x+by2z=1

3by+3z=b1

0=b+2 Donc sib6=2 il n"y a pas de solution. Sia=2 etb=2 alors le système est x2y2z=1

2y+z=1

Si l"on choisitycomme paramètre alors il y a une infinité de solutions (12y;y;12y)jy2R: (c) Enfin si b=0 alors la deuxième et troisième ligne du système triangulaire sont :(1a)z=1 et (2aa2)z=a. Doncz=11a=a2aa2(le sous-casb=0 eta=1 n"a pas de solution). Dans tous les cas il n"y a pas de solution. (d)

Conclusion :

Si a6=1 eta6=2 etb6=0, c"est un système de Cramer : il admet une unique solution. Si a=1 etb6=1 il n"y a pas de solution (le système n"est pas compatible). Si a=1 etb=1 il y a une infinité de solutions (qui forment un plan dansR3).

Si a=2 etb6=2 il n"y a pas de solution.

Si a=2 etb=2 il y a une infinité de solutions (qui forment une droite dansR3).

Si b=0 il n"y a pas de solution.Correction del"exer cice5 N1.On commence par simplifie rle système en ef fectuantles opérations sui vantessur les lignes : L1

L

1L4,L2 L2L4,L3 L3L4:

(S)()8 >:lxlt=ad lylt=bd lzlt=cd x+y+z+ (1+l)t=d 7

2.T raitonsle cas particulier l=0. Sil=0 alors le système n"a des solutions que sia=b=c=d. Les

solutions sont alors les(x;y;z;t)qui vérifiex+y+z+t=d. (C"est un espace de dimension 3 dansR4.) 3. Si l6=0 alors on peut faire l"opération suivante sur la dernière ligne :L4 L41l L11l L21l

L3pour

obtenir : (S)()8 >:lxlt=ad lylt=bd lzlt=cd (l+4)t=d1l (a+b+c3d) 4. Cas particulier l=4. La dernière ligne devient 0=a+b+c+d. Donc sia+b+c+d6=0 alors il n"y a pas de solutions. Sil=4 eta+b+c+d=0 alors existe une infinité de solutions : tad4 ;tbd4 ;tcd4 ;t jt2R 5. Cas général : l6=0 etl6=4. On calcule d"abordt=1l+4d1l (a+b+c3d)et en remplaçant par la valeur detobtenue on en déduit les valeurs pourx=t+1l (ad);y=t+1l (bd);z=t+1l (cd).

Il existe donc une solution unique :

:Correction del"exer cice6 NNotonsP(x) =ax3+bx2+cx+dun polynôme de degré63. 1.

T outd"abord calculons l"intégrale :

Z 4

2P(x)dx=

ax44 +bx33 +cx22 +dx 4 2 =60a+563 b+6c+2d: 2.

D"autre part

aP(2)+bP(3)+gP(4) =a8a+4b+2c+d+b27a+9b+3c+d+g64a+16b+4c+d: Donc aP(2)+bP(3)+gP(4) = (8a+27b+64g)a+(4a+9b+16g)b+(2a+3b+4g)c+(a+b+g)d: 3.

Pour a voirl"ég alité

R4

2P(x)dx=aP(2)+bP(3)+gP(4)quelque soit les coefficientsa;b;c;dil faut et

il suffit que b+6c+2d ce qui équivaut à 8>>< >:a+b+g=2

2a+3b+4g=6

4a+9b+16g=563

8a+27b+64g=60

De façon surprenante ce système à 3 inconnues et 4 équations a une solution unique : a=13 ;b=43 ;g=13 :8quotesdbs_dbs33.pdfusesText_39
[PDF] equation par substitution et combinaison

[PDF] méthode de substitution microéconomie

[PDF] système par addition

[PDF] equation a 2 inconnues substitution

[PDF] telecharger methode rose piano gratuit pdf

[PDF] comment faire un diaporama sur open office

[PDF] telecharger powerpoint

[PDF] méthode de cramer pdf

[PDF] comment faire un bilan comptable pdf

[PDF] faire un bilan comptable exemple

[PDF] faire un bilan comptable exercice

[PDF] logiciel bilan comptable

[PDF] faire un bilan synonyme

[PDF] exemple bilan financier

[PDF] comment faire aimer la lecture ? mon fils de 9 ans