[PDF] Chapitre 2 Continuité des fonctions réelles





Previous PDF Next PDF



LIMITE DUNE SUITE

Théorème (Unicité de la limite) Soit (un)n∈ une suite réelle. Si (un)n∈ possède une limite celle-ci est unique et notée lim n→+∞ un. Pour tout ℓ 



Propriété : (Unicité de la limite) Si une suite est convergente alors sa

Démonstration : On suppose que la suite (un) converge vers deux limites l1 et l2 avec l1 < l2. On note d = l2 −l1. Comme la suite (un) converge vers l1 



Limite finie dune fonction à valeurs réelles en un point a de R Limite finie dune fonction à valeurs réelles en un point a de R

Pré-requis : – Limites d'une suite réelle ;. – Fonctions à valeurs réelles Grâce à l'unicité de la limite on peut introduire la notation suivante :.



Chapitre 2 Continuité des fonctions réelles

Si une fonction admet l et l pour limites en un même point x0 alors l = l . Démonstration. Même principe que pour l'unicité de la limite d'une suite. Nous 



LIMITES DUNE FONCTION

Théorème (Unicité de la limite) a pour limite ℓ. Démonstration. (i) =⇒ (ii) On suppose que lima f = ℓ. Soit (un)n∈ une suite de limite a à valeurs dans D.



U.F.R. de Mathématiques Licence de Mathématiques S6 M66

Unicité de la limite en probabilité. On veut vérifier que la limite en probabilité est unique modulo l'égalité presque-sûre. Pour cela on supposera que Yn 



Chapitre 1 Suites réelles et complexes

Proposition 1.2.3. Toute suite extraite d'une suite convergente converge vers la même limite. Démonstration. Soit (un) une suite convergente de limite 



Suites numériques

Les suites possédant une limite l ∈ C sont dites convergentes et les autres divergentes. Proposition 4 (Unicité de la limite). Toute suite complexe poss`ede au 



Chapitre 2 - Limites et continuité pour une fonction de plusieurs Chapitre 2 - Limites et continuité pour une fonction de plusieurs

Sans surprise on retrouve les mêmes propriétés de base que pour la limite d'une suite réelle : Proposition 2.2. Soit · une norme sur Rn. (i) Unicité de la 



1) Suites divergentes

Pre requis : - monotonie des suites. - convergence d'une suite (def unicité de la limite….) - Fonction limite fini ou infinie en un point



LIMITE DUNE SUITE

Définition (Suite réelle) On appelle suite (réelle) toute fonction u de Théorème (Unicité de la limite) Soit (un)n? une suite réelle. Si (un)n?.



Unicité de la limite dune suite convergente

Un unicité se démontre presque toujours par l'absurde. Suposons que la suite (un) converge vers deux limites différentes l et.



LIMITES DUNE FONCTION

Théorème (Unicité de la limite) Soient f : D ?? une fonction et a ? adhérent Il se passe avec les fonctions la même chose qu'avec les suites pour les ...



LEÇON N? 58 : Limite finie dune fonction à valeurs réelles en un

Limites d'une suite réelle ;. – Fonctions à valeurs réelles : opérations Grâce à l'unicité de la limite on peut introduire la notation suivante :.



Chapitre 2 Continuité des fonctions réelles

Si une fonction admet l et l pour limites en un même point x0 alors l = l . Démonstration. Même principe que pour l'unicité de la limite d'une suite.



Chapitre 1 Suites réelles et complexes

Proposition 1.2.3. Toute suite extraite d'une suite convergente converge vers la même limite. Démonstration. Soit (un) une suite convergente de limite 



I Limite dune suite II Limites et inégalités

Théorème 2 (Unicité de la limite). Soit (un) ? RN. Si u possède une limite alors sa limite est unique. I.2 Caractérisations de la convergence.



Propriété : (Unicité de la limite) Si une suite est convergente alors sa

Propriété : (Unicité de la limite). Si une suite est convergente alors sa On suppose que la suite (un) converge vers deux limites l1 et l2 avec l1 < l2.



12 - Espaces vectoriels normés Cours complet

Suites dans un K-espace vectoriel normé de dimension finie. Théorème 2.1 : unicité de la limite d'une suite convergente pour une norme.



U.F.R. de Mathématiques Licence de Mathématiques S6 M66

Unicité de la limite en probabilité Soit (Yn)n?1 une suite de variables aléatoires définies sur le même espace probabilisé gaussiennes de loi N(c



[PDF] Unicité de la limite dune suite convergente

Théorème : une suite convergente a une limite unique Un unicité se démontre presque toujours par l'absurde Suposons que la suite (un) converge vers deux 



Démonstration : unicité de la limite dune suite - Lucas Willems

Découvrez comment démontrer qu'une suite ne peut admettre au plus qu'une seule limite Si une suite admet une limite alors cette limite est unique



[PDF] LIMITE DUNE SUITE - Christophe Bertault

Théorème (Unicité de la limite) Soit (un)n? une suite réelle Si (un)n? possède une limite celle-ci est unique et notée lim



[PDF] Propriété : (Unicité de la limite)

Propriété : (Unicité de la limite) Si une suite est convergente alors sa limite est unique Démonstration : On suppose que la suite (un) converge vers deux 



Preuve : unicité de la limite dune suite

10 mai 2020 · Preuve : unicité de la limite d'une suite Uniquement en cas de convergence Supposons l'existence de deux limites distinctes ?1



[PDF] Chapitre 1 Suites réelles et complexes

Si une suite converge sa limite est unique Démonstration Soit (un) une suite convergeant vers deux limites l et l Soit ? > 0 Alors comme (un) 



[Preuve] Unicité de la limite dune suite – Sofiane Maths - Share

17 juil 2020 · Énoncé Toute suite convergente admet nécessairement une seule et unique limite Définition utilisée Définition de la convergence d' 



[PDF] Suites numériques

Proposition 4 (Unicité de la limite) Toute suite complexe poss`ede au plus une limite Démonstration Supposons qu'une suite complexe (un)n?k0 poss`ede 



[PDF] Analyse I : suites limites et continuité - Igor Kortchemski

7 déc 2013 · Théorème 2 (Unicité de la limite) Soit u une suite convergente ou divergeant vers +? ou ?? Alors u admet une unique limite l ? R 



[PDF] CH VI : Convergence des suites réelles - Arnaud Jobin

Il est à noter que l'unicité de la limite s'étend au cas des limites infinies Ainsi une suite ne peut à la fois diverger vers +? et vers ?? • Il n' 

  • Comment montrer l'unicité d'une suite ?

    Dans un espace topologique séparé, on a unicité de la limite de toute suite : si une suite converge, sa limite est unique. Mais une suite peut ne pas avoir de limite (dans ce cas, on n'a pas existence de la limite, ce qui ne remet pas en cause l'unicité).
  • Comment montrer que la limite d'une suite est unique ?

    Si une suite converge, sa limite est unique. Ceci étant vrai pour tout ?, on en déduit que l ? l = 0, donc que l = l . (Nous avons utilisé le fait (trivial) suivant : si un réel positif est plus petit que toute quantité strictement positive, alors il est nul.)
  • Comment montrer que toute suite convergente est bornée ?

    Si (un)n converge, alors elle est bornée. Preuve. En effet, si l est la limite de la suite (un)n, prenons ? = 1 > 0, il existe N1 ? N tel que, pour tout n ? N1, on ait un ? l ? 1.
  • Une suite ne peut pas avoir deux limites distinctes. On proc? par disjonction de cas. Si une suite tend vers +?, elle est non majorée donc ne peut converger ni tendre vers ??. Si une suite tend vers ??, elle est non minorée donc ne peut converger non plus.
Chapitre 2 Continuité des fonctions réelles

Chapitre 2Continuit´e des fonctions r´eelles2.1 G´en´eralit´esD´efinition 2.1.1.Une fonction r´eelleest une application d"une partiedeRdansR.

La partieest appel´ee ensemble (ou domaine) de d´efinition de la fonction. Une fonction peut ˆetre d´efinie de plusieurs fa¸cons : - Par une formule explicite :() = 23
cos - Abstraitement :() est le nombre de nombres premiers compris entre 0 et.

2.2 Limite d"une fonction en un point

Soitune partie deR, et soit0R. On dit que0estadh´erent`as"il existe une suite d"´el´ements dequi converge vers0. On note l"ensemble des points adh´erents `a. Tout point deest adh´erent `a, c"est-`a-dire que . En g´en´eral,est plus grand que.

Exemples.a) Si= [01[, alors

= [01]. b) Si=]01[]1+[, alors = [0+]. c) Si=sin()N, alors = [11].

D´efinition 2.2.1.Soit:Rune fonction, et soit0

. On dit queadmet

Rpour limite en0si :

pour tout 0, il existe 0 tel que, pour tout,

0 = ()

ou, avec des quantificateurs,

0 00 = ()

17 Ceci se traduit de la fa¸con suivante : pour tout 0 (arbitrairement petit), il existe

0 tel que, siest `a une distance inf´erieure `ade0, alors() est `a une distance

inf´erieure `ade. Insistons sur le fait qued´epend de! Pour exprimer le fait queadmetpour limite en0, nous noterons lim

0() =ou()0

On peut aussi dire que() tend versquandtend vers0. Pour que ceci ait un sens, il faut montrer l"unicit´e de la limite - quand elle existe. Proposition 2.2.2.Si une fonction admetetpour limites en un mˆeme point0, alors=. D´emonstration.Mˆeme principe que pour l"unicit´e de la limite d"une suite.

Nous avons clairement les ´equivalences :

lim

0() =lim0(()) = 0lim0()= 0

Proposition 2.2.3.Soit:Rune fonction, et soit0. Siadmet une limite en0, alors celle-ci est forc´ement ´egale `a(0). D´emonstration.Soitla limite deen0. Soit 0, alors

00 = ()

En particulier, en prenant=0, la condition0 est satisfaite, donc (0) Ainsi(0)est un r´eel positif inf´erieur `a toute quantit´e strictementpositive, donc est nul, c"est-`a-dire que=(0). D´efinition 2.2.4.Soit:Rune fonction, et soit0. On dit queest continue en0siadmet une limite en0, c"est-`a-dire (d"apr`es la proposition) si lim

0() =(0)

D´efinition 2.2.5.Soit:Rune fonction, et soit0

. On dit queest prolongeable par continuit´e en0s"il existe une fonction: 0 Rcontinue en

0telle que=.

Proposition 2.2.6.Soit:Rune fonction, et soit0

. Alorsest prolongeable par continuit´e en0si et seulement siadmet une limite (finie) en0. 18

2.2.1 Limites `a droite et `a gaucheD´efinition 2.2.7.Soit:Rune fonction, et soit0

(1) On dit queadmetpour limite `a droite en0si la restriction de`a]0+[ admetpour limite en0. On note lim

00() =ou lim

+0() = (2) On dit queadmetpour limite `a gauche en0si la restriction de`a]0[ admetpour limite en0. On note lim

00() =ou lim

0() = Pour que la limite `a droite existe, il faut que0soit un point adh´erent `a]0+[. Notons ´egalement que, mˆeme dans le cas o`uest d´efinie en0, la valeur(0) n"intervient plus dans le calcul de la limite `a droite, puisqu"on a enlev´e0de l"ensemble de d´efinition. On peut faire la mˆeme remarque pour la limite `a gauche.

Remarque.Soit:Rune fonction, et soit0.

a) La fonctionadmet une limite en0(c"est-`a-dire,est continue en0) si et seulement si elle admet(0) comme limite `a droite et `a gauche en0. b) Siadmet des limites distinctes `a droite et `a gauche en0, alorsn"admet pas de limite en0. c) Soit:RRla fonction ´egale `a 1 surR, et nulle en 0. Alors lim

00() = 1 = lim00()

et pourtantn"admet pas de limite en 0 (elle est discontinue en 0).

2.2.2 Caract´erisation s´equentielle de la limite

L"id´ee est tr`es simple : pour faire tendrevers0, on peut prendre une suite qui converge vers0.

Proposition 2.2.8.Soit:Rune fonction, et soit0

. Alorsadmetpour limite en0si et seulement si, pour toute suite()d"´el´ements dequi converge vers

0, la suite()converge vers.

19 D´emonstration.. Supposons que lim0() =, et soit () une suite qui converge vers0. Soit 0. Alors il existe 0 tel que

0 = ()

D"autre part, on sait que

N0 on en d´eduit que . Nous allons montrer la contrapos´ee, `a savoir : si lim0()=, alors il existe une suite () d"´el´ements dequi converge vers0, telle que() ne converge pas vers. Supposons quen"admette paspour limite en0. Alors :

0 00 et()

En particulier, en prenant=1

pourN, on obtient : 0N0 1 et() Mais alors, la suite () converge vers0et la suite() ne converge pas vers. Ce qu"on voulait.

2.2.3 Op´erations sur les limites

Th´eor`eme 2.2.9.Soient:Ret:Rdeux fonctions, et soit0 . On suppose que lim0() =etlim0() = Alors (1)La fonction+admet+pour limite en0. (2)La fonctionadmetpour limite en0. (3)Supposons= 0. Alors la fonction1 est bien d´efinie dans un voisinage de0, et admet 1 pour limite en0. On appellevoisinagede0un intervalle ouvert de la forme ]00+[ avec 0.

D´emonstration.Grˆace `a la caract´erisation s´equentielle de la limite, onse ram`ene `a la

proposition analogue pour les limites de suites. Le seul point `amontrer est que, si= 0, alors la fonction 1 est bien d´efinie dans un voisinage de0. Supposons 0, alors nous avons :

0]00+[()

2 20

En effet, la n´egation s"´ecrit

0]00+[()

2 ce qui contredit le fait queadmettepour limite en0.

On peut r´ecup´erer les th´eor`emes sur les limites de suites (par exemple, le th´eor`eme

des gendarmes) et les adapter pour les limites de fonctions.

On peut aussi composer les limites de fonctions.

Th´eor`eme 2.2.10.Soient:1Ret:2Rdeux fonctions, telles que(1)

2, et soit0

1. On suppose queadmetpour limite en0. Alorsappartient `a

2. De plus, siadmet une limite en, alorsadmet la mˆeme limite en0.

En d"autres termes, si lim

() existe, alors : lim

0()() = lim()

La r´eciproque est fausse : il se peut que le membre de gauche existe, mais pas celui de droite. Par exemple, siest la fonction nulle, alorsest la fonction constante ´egale `a(0), donc admet une limite en tout point, alors que la limite deen 0 peut tr`es bien ne pas exister. D´emonstration.Comme0est adh´erent `a1, il existe une suite () d"´el´ements de1 qui converge vers0. Commeadmetpour limite en0, on en d´eduit que la suite (()) (`a valeurs dans2) converge vers, d"o`u 2.

Supposons `a pr´esent que lim

() existe, notons-la. Soit 0, alors il existe

0 tel que

2 = ()

d"autre part, commeadmetpour limite en0, il existe 0 tel que

10 = ()

En regroupant le tout, on trouve :

10 = (())

ce qu"on voulait.

2.2.4 Limites infinies

On peut r´ecup´erer ce qui a ´et´e fait pour les suites : les op´erations alg´ebriques sur les

limites infinies sont les mˆemes. On peut aussi composer les limitesinfinies. 21

2.3 Propri´et´es des fonctions continuesD´efinition 2.3.1.Soit:Rune fonction. On dit queest continue si elle est

continue en tout point de. Sietsont continues sur, alors+etsont continues sur, et1 est continue partout o`u elle est d´efinie. La fonctionest ´egalement continue sur.

2.3.1 Th´eor`eme des valeurs interm´ediaires

On l"appelle plus famili`erement le TVI. Il est d´emontr´e parCauchy dans son cours de 1821.
Th´eor`eme 2.3.2(Valeurs interm´ediaires).Soientetdeux r´eels avec , et soit : []Rune fonction continue. Alors, pour tout r´eelcompris entre()et(), il existe[]tel que() =. D´emonstration.Sans perte de g´en´eralit´e, on peut supposer que() (). Nous construisons par r´ecurrence une suite d"intervalles [], de la fa¸con suivante. - [00] = [] - Supposons [] construit. Soit=k+k

2le milieu de cet intervalle. Si() =,

on s"arrˆete. Sinon, on pose [+1+1] =? [] si() [] si() Si la suite d"intervalles ainsi construite est finie, alors on a trouv´e untel que() =. Sinon, nous avons, par contruction, les propri´et´es suivantes pour tout:

1)() ()

2) [+1+1][]

3)=00 2 En particulier les suites () et () sont adjacentes, donc convergent vers une limite commune. Donc() et() convergent vers(). Ainsi, par passage `a la limite dans l"in´egalit´e 1), on trouve que() =, ce qu"on voulait. Corollaire 2.3.3.L"image d"un intervalle par une fonction continue est un intervalle. Cela d´ecoule du fait suivant : une partiedeRest un intervalle si et seulement si, pour tousavec , l"intervalle [] est inclus dans. Si: []Rest une fonction continue, alors([]) est un intervalle, et 22
mais en g´en´eral l"ensemble de gauche est beaucoup plus petitque celui de droite. Penser `a une fonction telle que() =(). L"´egalit´e est cependant vraie siest une fonction strictement monotone (c"est le th´eor`eme de la bijection, que l"on verra plus loin). Voici un cas particulier du TVI, d´emontr´e en 1817 par Bolzano. Corollaire 2.3.4(Th´eor`eme de Bolzano).Soit: []Rune fonction continue. Si ()()0, alors il existe][tel que() = 0. D´emonstration.En effet,()()0 signifie que() et() sont de signes contraires, donc que 0 est compris entre les deux. Exemple.Tout polynˆome `a coefficients r´eels de degr´e impair admet aumoins une racine r´eelle. La propri´et´e des valeurs interm´ediaires correspond `a une notion intuitive : il est pos- sible de dessiner le graphe de la fonction"d"un seul trait»(c"est-`a-dire sans soulever le crayon). Cette remarque am`ene `a se poser la question : n"y a-t-il pas ´equivalence entre la

propri´et´e des valeurs interm´ediaires et la continuit´e? La r´eponse est malheureusement

n´egative. Un contre-exemple nous est donn´e par la fonction:RRd´efinie par () = sin?1 si= 0, et(0) = 0 Cette fonction n"est pas continue en 0 mais elle satisfait bien la propri´et´e des valeurs interm´ediaires pour chaque couple de points dansR. Plus g´en´eralement, le th´eor`eme de Darboux affirme que toute fonction []Rqui admet une primitive satisfait la propri´et´e des valeurs interm´ediaires.

2.3.2 Th´eor`eme des bornes

Th´eor`eme 2.3.5(Th´eor`eme des bornes).Soientetdeux r´eels avec , et soit : []Rune fonction continue. Alorsest born´ee sur[], et atteint ses bornes. D´emonstration.Commen¸cons par montrer queest major´ee. Raisonnons par l"absurde : sin"est pas major´ee, alors pour tout entierNon peut trouver un r´eel[] tel que() . Comme [] est born´e, d"apr`es Bolzano-Weierstrass, il existe une suite extraite (k) de () qui converge vers un certain. Comme [] est ferm´e,appartient `a []. Par continuit´e de, la suite(k) converge vers(). Mais ceci est impossible puisque(k) n"est pas born´ee. Doncest major´ee. Soitla borne sup´erieure de l"ensemble([]), nous allons montrer queest atteint par la fonction. SoitN, alors1 n"est pas un majorant de([]), donc il existe[] tel que() 1 . Comme()pour tout, on en d´eduit (par le th. des gendarmes) que la suite() converge vers. D"apr`es le th´eor`eme 23
de Bolzano-Weierstrass, il existe une suite extraite (k) de () qui converge vers un certain[]. Mais alors,() est ´egal `a la limite de la suite(k), donc() =, ce qu"on voulait. On montre par la mˆeme m´ethode queest minor´ee, et que la borne inf´erieure est atteinte. D"apr`es le th´eor`eme des valeurs interm´ediaires, on sait que([]) est un intervalle. D"apr`es le th´eor`eme des bornes, il existe des r´eelsettels que Le fait que [] soit un intervalleferm´e born´eest tr`es important. Voici quelques exemples : a)() =d´efinie sur [0+[ n"est pas major´ee. b)() = (1+)d´efinie sur [0+[ est major´ee mais n"atteint pas sa borne sup´erieure 1. c)() =1 d´efinie sur ]01] n"est pas major´ee. d)() = 1d´efinie sur ]01] est major´ee mais n"atteint pas sa borne sup´erieure 1.

2.3.3 Th´eor`eme de la bijection

Th´eor`eme 2.3.6(De la bijection).Soitun intervalle deR, et soit:Rune fonction continue strictement monotone. Alors : (1)L"ensemble:=()est un intervalle, dont les bornes sont les limites deaux bornes de. La fonctionr´ealise une bijection entreet. (2)La bijection r´eciproque1:est continue strictement monotone, de mˆeme sens de variations que. D´emonstration.(1). D"apr`es le th´eor`eme des valeurs interm´ediaires,´etant continue, l"image deparest un intervalle. Commeest strictement monotone, elle est injective, donc r´ealise une bijection avec son image. Sachant cela, il estfacile de v´erifier que les bornes desont les limites deaux bornes de. (2). On peut supposer queest strictement croissante. Montrons d"abord que1est strictement croissante sur. Soient etdanstels que , et soient=1() et=1(). Alors l"in´egalit´eest impossible car elle impliquerait()(), c"est-`a-dire. Nous avons donc , ce qui prouve que1est strictement croissante. Reste `a voir que1est continue. Soit

0, et soit 0. Supposons que0soit int´erieur `a, alors1(0) est int´erieur `a.

Il existe doncetdanstels que l"on ait

0 1(0) 0+

24

Commeest strictement croissante, il vient :

() 0 () Posons= min(0()()0), c"est un r´eel strictement positif qui satisfait par construction :

0 =()()

D"autre part :

()() =1()par croissance de1 = 1()1(0) par construction deet Ceci montre que1est continue en0. Si0est une extr´emit´e de, on proc`ede de fa¸con analogue. Notons que la d´emonstration de la continuit´e de1n"utilise pas la continuit´e de. En fait, on peut montrer le r´esultat suivant : une bijection monotone entre deux intervalles est toujours continue. Par contre, le fait qu"une bijection continue ait une r´eciproque continue n"est pas toujours vrai. L"hypoth`ese de monotonie est tr`es importante ici. Cette propri´et´e est une propri´et´e globale : une bijection deRdansR, continue en0, peut avoir une r´eciproque non continue en(0).

2.4 Continuit´e uniforme

D´efinition 2.4.1.Soit:Rune fonction. On dit queest uniform´ement continue sursi : pour tout 0, il existe 0 tel que, pour tout ()2, ou, avec des quantificateurs,

0 0()2 = ()()

Cette nouvelle notion n"est pas une notion locale, contrairement `a la notion de conti- nuit´e. Elle d´epend du choix de l"ensemble.quotesdbs_dbs33.pdfusesText_39
[PDF] caractérisation séquentielle de la limite

[PDF] demonstration de l'unicité de la limite d'une fonction

[PDF] théorème de la limite monotone

[PDF] montrer que f est minorée et atteint sa borne inférieure

[PDF] démonstration variance probabilité

[PDF] relation de chasles parallélogramme

[PDF] vecteurs opposés

[PDF] vecteur nul exemple

[PDF] remplacement alternateur espace 3 2.2 dci

[PDF] tuto changement alternateur espace 4

[PDF] demontage alternateur espace 4 2.2 dci

[PDF] demontage alternateur espace 2 diesel

[PDF] demontage alternateur espace 4 1.9 dci

[PDF] prix changement alternateur espace 3

[PDF] changer alternateur renault espace 3