[PDF] Cardinalité des ensembles finis





Previous PDF Next PDF



Ch 1. Ensembles et dénombrement I. Ensembles II. Cardinaux

Définition 8 Soit A un ensemble fini. Le cardinal de A noté



Ensembles et dénombrement

E 5 Si m ? n alors l'ensemble [m



Combinatoire et dénombrement

Soient E un ensemble fini et A et B deux parties de E disjointes. Le cardinal de la réunion de A et de B est la somme des cardinaux des parties A et B. ? 



COMBINATOIRE ET DÉNOMBREMENT

Dénombrer c'est compter le nombre d'éléments que contient un ensemble fini



Chapitre6 : Dénombrement

Chapitre6 : Dénombrement I Ensembles finis et cardinaux : les bases. A) Supposé connu ... Ce qu'est le cardinal d'un ensemble fini (card(H)=0).



Cardinalité des ensembles finis

Deux ensembles (fini ou non) sont équipotents ou de même cardinal s'il existe une bijection entre eux. Pourquoi dénombrer un ensemble fini ?



Quelques notions mathématiques de base

22 janv. 2017 Dénombrer un ensemble fini non vide consiste à déterminer le nombre de ses éléments. ... Cardinal de l'ensemble des k-listes d'un ensemble.



Dénombrement

17. Dénombrement. Théorème 4. Soit E un ensemble fini de cardinal n. Soit p ? n. Alors le nombre de p-arrangements Ap n de l'ensemble. E est égal à.



Ensembles : définitions dénombrement et construction

Cardinal et dénombrement. Ensembles Le cardinal d'un ensemble fini E est son nombre d'éléments. ... Mode de définition trivial (pour ensembles finis).



denombrement.pdf - Dénombrement

5 nov. 2009 1 Cardinaux d'ensembles finis. 1.1 Quelques définitions. Définition 1. Un ensemble E est fini s'il est en bijection avec l'ensemble {1; ...



COMBINATOIRE ET DÉNOMBREMENT - maths et tiques

Dénombrer c’est compter le nombre d’éléments que contient un ensemble fini c’est à dire en déterminer le cardinal Exemples : L’ensemble ! des joueurs d’une équipe de foot est un ensemble fini Alors #$ &(!) = 11 L’ensemble ? des entiers naturels n’est pas un ensemble fini



Cours - Denombrement

1 cardinal d’un ensemble fini Dé?nition-théorème (Ensemble ?ni/in?ni cardinal d’un ensemble ?ni) Soit E un ensemble • On dit que E est ?ni s’il est vide ou si pour un certain n ? N ? il existe une bijection de l’ensemble ¹1 n ºsur E



DENOMBREMENT - Unisciel

Le cardinal d’un ensemble fini est le nombre de ses éléments On définit aussi le cardinal d’un ensemble infini mais c’est beaucoup plus compliqué Exemples : L’ensemble des nombres impairs et sont infinis dénombrables



Ensembles ?nis et Dénombrement

a) Cardinal d’un ensemble ?ni Cardinal d’un ensemble ?ni Notations j A Card( ) #A Tout fondement théorique des notions d’entier na-turel et de cardinal est hors programme Cardinal d’une partie d’un ensemble ?ni cas d’égalité Une application entre deux ensembles ?nis de même cardinal est bijective si et seulement



Chapitre6 : Dénombrement

‚ Ce qu’est le cardinal d’un ensemble fini (card(H) = 0) ‚ Pour np P N avec p ? n card(JpnK) = n´p+1 ‚ Proposition (admise) : Si E est fini et siF ? E alors F est fini et card(F) ? card(E) Si E et F sont disjoints et finis alors F YE est fini et card(E YF) = card(E)+card(F) B) Conséquences Si E1E2 En sont finis et



Searches related to dénombrement cardinal dun ensemble fini PDF

? 1) CARDINAL d’un ensemble fini ( effectif ) a) Définition 1 : Un ensemble ? contenant n éléments où n ? IN est dit « fini » On dit alors que « le cardinal de ? est n » on note card( ?) = n ou encore ? = n b) Exemples : 1 ? est l’ensemble des lettres de l’alphabet : card( ?) = ? = 26

Quel est le cardinal d’un ensemble fini ?

1CARDINAL D’UN ENSEMBLE FINI Dé?nition-théorème (Ensemble ?ni/in?ni, cardinal d’un ensemble ?ni)SoitEun ensemble. • On dit queEest?nis’il est vide ou si, pour un certainn? N?, il existe une bijection de l’ensemble ¹1,nºsurE. On dit dans le cas contraire queEestin?ni.

Comment calculer le cardinal d’un ensemble ?

On admet qu’un tel entier n, si il existe est unique, il est appelé cardinal de E et noté card(E), |E| ou encore #E. ? Le cardinal d’un ensemble fini est son nombre d’éléments. = { x1, x2, ...,xn }. ? Si E n’est pas un ensemble fini, on dit qu’il est infini. Un singleton est un ensemble de cardinal 1 E =

Comment montrer qu’un ensemble est fini ?

Dans la pratique : Pour montrer qu’en ensemble est fini et donner son cardinal, on pourra le mettre en bijection avec un ensemble fini dont le cardinal est connu. Lemme 10.2: Si E est une ensemble fini de cardinal n ? 1 et a un élément de E alors E{a} est fini et de cardinal n – 1. Si n = 1 alors E = {a} et E{a} = ?, le lemme est vérifié

Comment dénombrer un ensemble ?

? Méthode : Pour dénombrer un ensemble on peut représenter ses éléments dans une structure de données (arbre, tableau...) qui permet de compter. Corollaire : Soit E et F deux ensembles finis de cardinal respectifs p et n. Théorème 10.3 : Soit E un ensemble fini de cardinal n, l’ensemble P(E) des parties de E est fini et card(P(E)) = 2n.

Cardinalité des ensembles finis

Cardinalité

Université de Toulouse

Année 2020/2021

1 / 23

Cardinalité des ensembles finis

Cardinalité des ensembles finis2 / 23

Ensembles équipotents

SoientE=fa;b;c;dgetF=f1;2;3g.Il existe une application surjective deEsurF, mais pas d"application injective.Il existe application injective deFsurE, mais pas d"application surjective. En fait, il n"y a pas assez d"éléments dansF(ou trop peu dansE). Le cardinal d"un ensemble précise la notion de nombre d"élémentsEnsemble de même cardinal Deux ensembles (fini ou non) sontéquipotentsou demême cardinals"il existe une bijection entre eux. Cardinalité des ensembles finisEnsembles équipotents3 / 23

Cardinal d"un ensemble fini

Définition

Un ensembleEestfinisiE=;ou si9n2?tel queEest en bijection avecf1;:::;ng. Cet entier est unique, il est appelé lecardinaldeEnoté

Card(E). SiE=;, on poseCard(E) =0.Pour montrer que cet entier est définit de manière unique, on prouve la

proposition suivante :Proposition S"il existe une application injective def1;:::;ngdansf1;:::;kgalors nk.S"il existe une application surjective def1;:::;ngdansf1;:::;kg alorsnk.S"il existe une application bijection def1;:::;ngdansf1;:::;kgalors n=k.Cardinalité des ensembles finisCardinal d"un ensemble fini4 / 23

Cardinal d"un ensemble fini

Définition

Un ensembleEestfinisiE=;ou si9n2?tel queEest en bijection avecf1;:::;ng. Cet entier est unique, il est appelé lecardinaldeEnoté Card(E). SiE=;, on poseCard(E) =0.Qui se traduit de la manière suivante avec les cardinaux.

Proposition

SoientEetFdeux ensembles finis. On a :Il existe une application injective deEdansFsi et seulement si Card(E)Card(F).Il existe une application surjective deEdansFsi et seulement si Card(E)Card(F).Il existe une application bijective deEdansFsi et seulement si Card(E) =Card(F).Cardinalité des ensembles finisCardinal d"un ensemble fini4 / 23

Principe des tiroirs

Principe des tiroirs

SoientEetFdeux ensembles finis non vides etf:E!Fune application. SiCard(E)>Card(F)alors il existex1;x22Etels quef(x1) =f(x2).Nombre moyen de cheveux : 150000

Nombre d"habitant à Paris : 2,2 million

Il y a au moins deux personnes à Paris qui ont exactement le même nombre de cheveux.Principe des tiroirs généralisé SoientEetFdeux ensembles finis non vides etf:E!Fune application. SiCard(E)>kCard(F)aveck2?alors il existe une valeur defqui est répétée au moinsk+1 fois.Cardinalité des ensembles finisPrincipe des tiroirs5 / 23

Principe des tiroirs

Principe des tiroirs

SoientEetFdeux ensembles finis non vides etf:E!Fune application. SiCard(E)>Card(F)alors il existex1;x22Etels quef(x1) =f(x2).Nombre moyen de cheveux : 150000

Nombre d"habitant à Paris : 2,2 million

Il y a au moins deux personnes à Paris qui ont exactement le même nombre de cheveux.Principe des tiroirs généralisé SoientEetFdeux ensembles finis non vides etf:E!Fune application. SiCard(E)>kCard(F)aveck2?alors il existe une valeur defqui est répétée au moinsk+1 fois.Cardinalité des ensembles finisPrincipe des tiroirs5 / 23

Dénombrement

Dénombrement6 / 23

Pourquoi dénombrer un ensemble fini?

En informatique vous utiliserez la notion de dénombrement au moins dans

les deux cas de figures suivants :dénombrer le nombre de cas à analyser par un algorithme en vu

d"étudier sa complexité;lorsqu"on tire au hasard un élément dans un univers finis de manière équiprobable (c"est à dire que chaque élément à la même probabilité d"être tiré), la probabilité que cet élément soit dans l"ensembleA est

P(A) =Card(A)Card(

):DénombrementMotivations7 / 23 Dénombrement et opérations sur les ensembles Union

Card(A[B) =Card(A) +Card(B)Card(A\B)AB

abcd efgh DénombrementOpération sur les ensembles8 / 23 Dénombrement et opérations sur les ensembles Union

Card(A[B) =Card(A) +Card(B)Card(A\B)

Card(A[B[C) =Card(A) +Card(B) +Card(C)Card(A\B)

Card(A\C)Card(B\C) +Card(A\B\C)AB

C abcd efgh i jkl m DénombrementOpération sur les ensembles8 / 23 Dénombrement et opérations sur les ensembles

Produit cartésien

Card(AB) =Card(A)Card(B)

Card(A1 An) =Card(A1) Card(An)a

1a 2a 3a

4(a1;b1)(a1;b2)(a1;b3)(a2;b1)(a2;b2)(a2;b3)(a3;b1)(a3;b2)(a3;b3)(a4;b1)(a4;b2)(a4;b3)A=fa1;a2;a3;a4g,B=fb1;b2;b3g,Card(AB) =43=12DénombrementOpération sur les ensembles9 / 23

Dénombrement et opérations sur les ensembles

Passage au complémentaire

Card €A

Š=Card(

)Card(A)DénombrementOpération sur les ensembles10 / 23

Arrangement

Permutation denélémentsNombre de façon de rangernobjets dans l"ordre. n! =n(n1)(n2) 21Examples :

DénombrementArrangement11 / 23

Arrangement

Permutation denélémentsNombre de façon de rangernobjets dans l"ordre. n! =n(n1)(n2) 21Examples : Voici les 4! =24 permutations de quatre éléments distincta,b,cetd: abcd abdc acbd acdb adbc adcb bacd badc bcad bcda bdac bdca cabd cadb cbad cdba cdab cdba dabc dacb dbac dbca dcab dcba

DénombrementArrangement11 / 23

Arrangement

Permutation denélémentsNombre de façon de rangernobjets dans l"ordre. n! =n(n1)(n2) 21Examples : Voici les 4! =24 permutations de quatre éléments distincta,b,cetd: abcd abdc acbd acdb adbc adcb bacd badc bcad bcda bdac bdca cabd cadb cbad cdba cdab cdba dabc dacb dbac dbca dcab dcba

De combien de façons pouvez-vous ranger 10 livres sur une étagère?DénombrementArrangement11 / 23

Arrangement

Permutation denélémentsNombre de façon de rangernobjets dans l"ordre. n! =n(n1)(n2) 21Examples : Voici les 4! =24 permutations de quatre éléments distincta,b,cetd: abcd abdc acbd acdb adbc adcb bacd badc bcad bcda bdac bdca cabd cadb cbad cdba cdab cdba dabc dacb dbac dbca dcab dcba De combien de façons pouvez-vous ranger 10 livres sur une étagère?

10! =3628800DénombrementArrangement11 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples :

DénombrementArrangement12 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples : LesA34=4332=24 arrangements de 3 éléments choisis parmia,b,c,d: abc abd acb acd adb adc bac bad bca bcd bda bdc cab cad cba cdb cda cdb dab dac dba dbc dca dcb

DénombrementArrangement12 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples :

Quinze chevaux participes à une course, le nombre de tiercé est :DénombrementArrangement12 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples : Quinze chevaux participes à une course, le nombre de tiercé est : A

315=151413DénombrementArrangement12 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples : Quinze chevaux participes à une course, le nombre de tiercé est : A

315=151413

Nombre d"injection deE=f1;2;3gdansF=f1;2;:::;15g:DénombrementArrangement12 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples : Quinze chevaux participes à une course, le nombre de tiercé est : A

315=151413

Nombre d"injection deE=f1;2;3gdansF=f1;2;:::;15g:

A

315=151413DénombrementArrangement12 / 23

Arrangement

Arrangement depéléments parminavec répétition :Nombre de listes ordonnées depéléments parmin, mais on s"autorise des

répétitions éventuelles des éléments n pExample : Les 3

2=9 arrangements avec répétitions de 2 éléments parmia,b,c:

aa ab ac ba bb bc ca cb ccProposition Le cardinal de l"ensemble des applications deEdansF, notéFE, est : Card €FEŠ=Card(F)Card(E)PropositionLe cardinal de l"ensemble des parties d"un ensembleEfini est : Card(P(E)) =2Card(E)DénombrementArrangement13 / 23

Arrangement

Arrangement depéléments parminavec répétition :Nombre de listes ordonnées depéléments parmin, mais on s"autorise des

répétitions éventuelles des éléments n pExample :

Raymond Queneau a écrit un ouvrage inti-

tuléCent mille milliards de poèmes. Il est composé de 10 pages contenant chacune 14 vers. Le lecteur peut composer son propre poème de 14 vers en prenant le premier vers de l"une des 10 pages puis le deuxième vers de l"une des 10 pages et ainsi de suite jusqu"au quatorzième vers.Proposition Le cardinal de l"ensemble des applications deEdansF, notéFE, est : Card

€FEŠ=Card(F)Card(E)

Proposition

Le cardinal de l"ensemble des parties d"un ensembleEfini est : Card(P(E)) =2Card(E)DénombrementArrangement13 / 23

Arrangement

Arrangement depéléments parminavec répétition :Nombre de listes ordonnées depéléments parmin, mais on s"autorise des

répétitions éventuelles des éléments n pProposition Le cardinal de l"ensemble des applications deEdansF, notéFE, est : Card

€FEŠ=Card(F)Card(E)Proposition

Le cardinal de l"ensemble des parties d"un ensembleEfini est : Card(P(E)) =2Card(E)DénombrementArrangement13 / 23

Arrangement

Arrangement depéléments parminavec répétition :Nombre de listes ordonnées depéléments parmin, mais on s"autorise des

répétitions éventuelles des éléments n pProposition Le cardinal de l"ensemble des applications deEdansF, notéFE, est : Card

€FEŠ=Card(F)Card(E)Proposition

Le cardinal de l"ensemble des parties d"un ensembleEfini est : Card(P(E)) =2Card(E)DénombrementArrangement13 / 23

Combinaison

Combinaisons depéléments parminsans répétition :nombre de sous-ensembles depéléments dans un ensemble contenantn

éléments

C pn=Apnp!=n!p!(np)!Example : LesC23=3!2!1!=3 combinaisons de 2 éléments choisis parmia,b,c: ab ac bc

DénombrementCombinaison14 / 23

Combinaison

Proposition

C npn=CpnCp+1 n+1=Cpn+Cp+1n (a+b)n=nX i=0Cknakbnk(formule du binôme)DénombrementCombinaison15 / 23

Combinaison

Combinaisons depéléments parminavec répétition :Nombre de listes non ordonnées, avec répétition éventuelle, depéléments

dans un ensemble contenantnéléments K pn=Cp n+p1=(n+p1)!p!(n1)!Examples :

DénombrementCombinaison16 / 23

Combinaison

Combinaisons depéléments parminavec répétition :Nombre de listes non ordonnées, avec répétition éventuelle, depéléments

dans un ensemble contenantnéléments K pn=Cp n+p1=(n+p1)!p!(n1)!Examples :

LesK24=C24+21=(4+21)!(41)!2!=542

=10 combinaisons avec répétitions de 2 lettres choisies parmia,b,c,dsont : aa ab ac ad bb bc bd cc cd dd

DénombrementCombinaison16 / 23

Combinaison

Combinaisons depéléments parminavec répétition :Nombre de listes non ordonnées, avec répétition éventuelle, depéléments

dans un ensemble contenantnéléments K pn=Cp n+p1=(n+p1)!p!(n1)!Examples :

LesK24=C24+21=(4+21)!(41)!2!=542

=10 combinaisons avec répétitions de 2 lettres choisies parmia,b,c,dsont : aa ab ac ad bb bc bd cc cd dd Combien y a-t-il de dominos avec 10 symboles différents?DénombrementCombinaison16 / 23

Combinaison

Combinaisons depéléments parminavec répétition :Nombre de listes non ordonnées, avec répétition éventuelle, depéléments

dans un ensemble contenantnéléments K pn=Cp n+p1=(n+p1)!p!(n1)!Examples :

LesK24=C24+21=(4+21)!(41)!2!=542

=10 combinaisons avec répétitions de 2 lettres choisies parmia,b,c,dsont : aa ab ac ad bb bc bd cc cd dd Combien y a-t-il de dominos avec 10 symboles différents? K

210=C210+21=11!9!:2!=11102

=55DénombrementCombinaison16 / 23

Résumé

Tirages depéléments parmin:TiragesOrdonnésNon ordonnés

Sans remiseA

pn=n!(np)!C pn=n!p!(np)!Avec remisen pK pn=Cp n+p1DénombrementCombinaison17 / 23

Résumé

Rangement depobjets dansncases :ObjetsDiscernablesIndiscernables

Un seul dans

chaque caseA pn=n!(np)!C pn=n!p!(np)!Éventuellement plusieurs dans chaque casen pK pn=Cp n+p1DénombrementCombinaison18 / 23

Cardinalité des ensembles infinis

Ensembles dénombrables

Cardinalité des ensembles infinis19 / 23

Ensembles dénombrables

Définition : Ensemble dénombrable

Un ensemble estdénombrables"il est fini ou s"il est en bijection?.Montrer que les ensembles suivants sont dénombrables :

?rf0gest dénombrable par la bijectionl"ensemble des nombres pairs, noté 2?, est dénombrable par la

bijectionl"ensemble des nombres impairs, noté 2?+1, est dénombrable par la

bijectionl"ensemble des entiers relatifs?est dénombrable par la bijectionl"ensemble?2est dénombrable par la bijectionProposition

Tout sous-ensembleX?est dénombrable.Cardinalité des ensembles infinis20 / 23

Critère de dénombrabilité

Proposition

Il existe une applicationf:X!?qui est injective si et seulement siX est dénombrable.Exemples d"applications : Un sous-ensemble d"un ensemble dénombrable est dénombrable.

2est dénombrable.?

kest dénombrable.Un produit fini d"ensembles dénombrables est dénombrable.

Proposition

Il existe une applicationf:?!Xqui est surjective si et seulement siX est dénombrable.Exemples d"applications : ?est dénombrable.Une union dénombrable d"ensembles dénombrables est dénombrable.

Cardinalité des ensembles infinis21 / 23

Ensembles non dénombrables

Théorème (Cantor 1981)

SoientEun ensemble. Il n"existe pas d"application bijective deEdans P(E).On en déduit queP(?)n"est pas dénombrable.Théorème L"ensemble[0;1[n"est pas dénombrable.Cardinalité des ensembles infinis22 / 23 S"il existe une application injective deAversBet une application injective deBversA, alors il existe une application bijection deAversB.Exemple d"application : P(?)et[0;1]sont en bijection car les deux fonctions suivantes sont des injections : f:P(?)![0;1] A7!P n2A3n g: [0;1]! P(?) x=0;x0x1x2x3x4:::7! fi2?sixi=1gCardinalité des ensembles infinis23 / 23quotesdbs_dbs33.pdfusesText_39
[PDF] cardinal de lunion de trois ensembles

[PDF] diagramme de venn union intersection

[PDF] diagramme de venne alloprof

[PDF] diagramme de venn définition

[PDF] diagramme de venn seconde cours

[PDF] interro seconde proba

[PDF] diagramme de venn cours

[PDF] différence entre diagramme en baton et diagramme en barre

[PDF] histogramme en barre

[PDF] histogramme en baton

[PDF] diagramme intégral

[PDF] tuyaux d'orgue maths

[PDF] construire un diagramme en tuyau d'orgue

[PDF] diagramme en secteur

[PDF] diagramme en tuyaux d'orgue