[PDF] Fonctions de plusieurs variables





Previous PDF Next PDF



Limites et continuité pour une fonction de plusieurs variables

Les propriétés de base pour les limites de fonctions de plusieurs variables sont les mêmes que pour les fonctions d'une variable réelle. Les trois propositions 



Chapitre 2 - Continuité dune fonction de plusieurs variables

Maintenant qu'on a défini la notion de limite pour des suites dans Rn la notion de continuité s'étend sans problème à des fonctions de plusieurs variables.



TD1 – Continuité des fonctions de plusieurs variables réelles

Solution. On rappelle que pour étudier la continuité d'une fonction f sur un point il faut : — vérifier si la limite de f au point x0 existe et 



CHAPITRE 1 Fonctions à plusieurs variables : limites et continuité

Fonctions à plusieurs variables : limites et continuité. Dans ce chapitre on s'intéresse à des fonctions f : D ? Rn ? Rp où n > 2 et p ? 1.



Cours dAnalyse 3 Fonctions de plusieurs variables

Notamment la compacité et la continuité : toute fonction continue sur un compact est uniformément continue (nous verrons ce que cela veut dire) sur ce compact 



FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Si f est une altitude on dit courbe isoplèthe. etc. 2 Limites et continuité. Définition 2.1 Soit f : R2 ? R une fonction réelle de deux variables réelles



Fonctions de plusieurs variables

fxy(t). Etudier la continuité de F sur R2. Correction ?. [005554]. Exercice 3 ***T.



Chapitre 1 - Fonctions de plusieurs variables. Limites dans R

A la lumière des exercices 5 et 6 on voit que l'étude de la continuité et de la dérivabilité d'une fonction de R dans Rp ne pose pas vraiment de difficulté 



Fonctions de plusieurs variables

Fonctions de plusieurs variables Donner un développement limité à l'ordre 3 en 0 de la fonction implicitement ... Etudions la continuité de f en (00).



2.4 Différentiabilité en plusieurs variables

Chapter 2: Fonctions de plusieurs variables La différentiabilité est une condition plus forte que la continuité et la dérivabilité.



Continuité d’une fonction de plusieurs variables

Continuité d’une fonction de plusieurs variables Celaprouvequelasuite(x m) m2N estdeCauchy PuisqueR nestcompletelleconvergevers unelimitex Comme estfermécettelimiteappartientà En?npourtoutm2N ona x m+1 = f(x m): L’hypothèsesurfimpliquequefestcontinuesurdoncparpassageàlalimite(m!1) onobtient x= f(x):



Continuitéd’unefonctionde plusieursvariables

Exercice5 Prologerparcontinuitélafonction: f(xy) = xyln(x2 +y2) aupoint(00) Solution Oncherchededémontrerquenotrefonctionadmetlimite0 lorsque(xy) ?(00) à l



Leçon 02 – Cours : Fonctions à plusieurs variables

3 1 Fonctions implicites dans le cas de deux variables Tout d'abord expliquons ce qu'est une fonction implicite Lorsqu'on étudie une fonction x ? y = f(x) y est explicitement fonction de x c'est à dire que connaissant les différentes valeurs de x on peut calculer directement y



Limites et continuité pour une fonction de plusieurs variables

La proposition suivante généralise le théorème qui dit qu’une fonction continue sur un segmentestcontinueetatteintsesbornes: Proposition2 22 L’imaged’uncompactparunefonctioncontinueestcompacte Corollaire2 23 SoitKuncompactdeRnetfunefonctioncontinuedeKdansR Alors festbornéeetatteintsesbornes



Fonctions de plusieurs variables : Sujet et Corrigé de l’Examen

Pour (x;y) 6= (0 ;0) la fonction a une expression rationnelle donc par les théorèmes généraux sur la continuité de la somme et du produit elle est continue en chacun de ces points Reste à étudier la continuité en (0;0) On peut le faire par les normes ou bien par passage en coordonnées polaires



Searches related to fonction à plusieurs variables continuité PDF

Fonctions de plusieurs variables Exercices de Jean-Louis Rouget Retrouver aussi cette ?che sur www maths-france * très facile ** facile *** dif?culté moyenne **** dif?cile ***** très dif?cile I : Incontournable T : pour travailler et mémoriser le cours Exercice 1 **T

Comment calculer la continuité d’une fonction de plusieurs variables?

Continuité d’une fonction de plusieurs variables Celaprouvequelasuite(x m) m2NestdeCauchy.PuisqueR nestcomplet,elleconvergevers unelimitex.Comme estfermé,cettelimiteappartientà .En?npourtoutm2N ona x m+1= f(x

Qu'est-ce que la fonction de plusieurs variables?

Chapitre 2 1 Fonctions de plusieurs variables Ce chapitre est conscr´e aux fonctions de plusieurs variables, c’est-`a-dire d´e?nies sur une partie de Rn, qu’on appellera son domaine de d´e?nition. On se limitera essentiellement aux fonctions de 2 ou 3 variables.

Comment calculer les fonctions de plusieurs variables?

1 Fonctions de plusieurs variables Ce chapitre est conscr´e aux fonctions de plusieurs variables, c’est-`a-dire d´e?nies sur une partie de Rn, qu’on appellera son domaine de d´e?nition. On se limitera essentiellement aux fonctions de 2 ou 3 variables. Exemple 1. Soit f 1d´e?nie sur R2par f 1(x,y) = (x+y)/(x?y).

Quels sont les exercices corrigés sur les fonctions de plusieurs variables ?

On propose des exercices corrigés sur les fonctions de plusieurs variables. C’est le calcul différentiel en dimension finie. En particulier le calcul des dérivées partielles et les extremums des fonctions de plusieurs variables. Noter qu’on peut aussi parler de clacul differentiel dans les espaces de dimension infinie.

Exo7

Fonctions de plusieurs variables

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile

I : Incontournable

Exercice 1** IEtudier l"existence et la valeur éventuelle des limites suivantes : 1. xyx

2+y2en(0;0)

2. x2y2x

2+y2en(0;0)

3. x3+y3x

2+y4en(0;0)

4. px

2+y2jxjpjyj+jyjpjxjen(0;0)

5. (x2y)(y2x)x+yen(0;0) 6.

1cospjxyjjyjen(0;0)

7. x+yx

2y2+z2en(0;0;0)

8. x+yx

2y2+z2en(2;2;0)

:xy(x2y2)x

2+y2si(x;y)6= (0;0)

0 si(x;y) = (0;0). Montrer quefest de classeC1(au moins)

surR2. :y

2sinxy

siy6=0

0 siy=0.

existent et sont différents. (x;y)7!(exey;x+y)est unC1-difféomorphisme deR2sur lui-même. 1

Exercice 5***Soitn2N. Montrer que l"équationy2n+1+yx=0 définit implicitement une fonctionjsurRtelle que :

(8(x;y)2R2);[y2n+1+yx=0,y=j(x)].

Montrer quejest de classeC¥surRet calculerR2

0j(t)dt.

l"égalitéex+y+y1=0. donné) si et seulement si8l2]0;+¥[,8x2Rn,f(lx) =lrf(x). Montrer pour une telle fonction l"identité d"EULER:

1.f(x;y) =x3+3x2y15x12y

2.f(x;y) =2(xy)2+x4+y4.

A7!A1. Montrer quefest différentiable en tout point deMn(R)nf0get déterminer sa différentielle.

1.w= (2x+2y+ex+y)(dx+dy)surR2.

2.w=xdyydx(xy)2surW=f(x;y)2R2=y>xg

3.w=xdx+ydyx

2+y2ydy

4.w=1x

2ydx1xy

2dysur(]0;+¥[)2(trouver un facteur intégrant non nul ne dépendant que dex2+y2).

2 1. 2 (x;y)7!x:yetg:R3R3!R (x;y)7!x^y. x7!x1+kxkest un homéomorphisme. x7! kxk2est différentiable sur Enf0get préciserd f. Montrer quefn"est pas différentiable en 0.

2+(ya)2+p(xa)2+y2,aréel donné.

parg(x;y) =fcos(2x)ch(2y) ait un laplacien nul sur un ensemble à préciser. (On rappelle que le laplacien degest rotation affine. Correction del"exer cice1 N1.fest définie surR2nf(0;0)g. Pourx6=0,f(x;0) =0. Quandxtend vers 0, le couple(x;0)tend vers le couple(0;0)etf(x;0)tend vers 0. Donc, sifa une limite réelle en 0, cette limite est nécessairement 0.

Pourx6=0,f(x;x) =12

. Quandxtend vers 0, le couple(x;x)tend vers(0;0)etf(x;x)tend vers12 6=0.

Doncfn"a pas de limite réelle en(0;0).

2.fest définie surR2nf(0;0)g.

Pour(x;y)6= (0;0),jf(x;y)j=x2y2x

2+y2=jxyjx

2+y2jxyj612

jxyj. Comme12 jxyjtend vers 0 quand le couple (x;y)tend vers le couple(0;0), il en est de même def.f(x;y)tend vers 0 quand(x;y)tend vers(0;0).

3.fest définie surR2nf(0;0)g.

Poury6=0,f(0;y) =y3y

4=1y . Quandytend vers 0 par valeurs supérieures, le couple(0;y)tend vers le couple(0;0)etf(0;y)tend vers+¥. Doncfn"a pas de limite réelle en(0;0).

4.fest définie surR2nf(0;0)g.

Pourx6=0,f(x;x) =p2x22jxjpjxj=1p2jxj.Quandxtend vers 0, le couple(x;x)tend vers le couple(0;0)et f(x;x)tend vers+¥. Doncfn"a pas de limite réelle en(0;0).

5.fest définie surR2nf(x;x);x2Rg.

Pourx6=0,f(x;x+x3) =(x+x2x3)(x+(x+x2)2)x

3x!01x

. Quandxtend vers 0 par valeurs supérieures, le couple(x;x+x3)tend vers(0;0 etf(x;x+x3)tend vers¥. Doncfn"a pas de limite réelle en (0;0).

6.fest définie surR2nf(x;0);x2Rg.

1cospjxyjjyj(x;y)!(0;0)(pjxyj)22jyj=jxj2

et doncftend vers 0 quand(x;y)tend vers(0;0).

7.fest définie surR3privé du cône de révolution d"équationx2y2+z2=0.

f(x;0;0) =1x qui tend vers+¥quandxtend vers 0 par valeurs supérieures. Doncfn"a pas de limite réelle en(0;0;0).

8.f(2+h;2+k;l) =h+kh

2k2+l2+4h+4k=g(h;k;l).g(h;0;0)tend vers14

quandhtend vers 0 etg(0;0;l) tend vers 06=14

quandltend vers 0. Donc,fn"a pas de limite réelle quand(x;y;z)tend vers(2;2;0).Correction del"exer cice2 N•fest définie surR2.

•fest de classeC¥surR2nf(0;0)gen tant que fraction rationnelle dont le dénominateur ne s"annule pas sur

R

2nf(0;0)g.

•Continuité en(0;0).Pour(x;y)6= (0;0), jf(x;y)f(0;0)j=jxyjjx2y2jx

2+y26jxyjx2+y2x

2+y2=jxyj.

Commejxyjtend vers 0 quand le couple(x;y)tend vers le couple(0;0), on a donc lim(x;y)!(0;0) (x;y)6=(0;0)f(x;y) =f(0;0). On en déduit quefest continue en(0;0)et finalementfest continue surR2. fest de classeC0au moins surR2. 4

•Dérivées partielles d"ordre1surR2nf(0;0)g.fest de classeC1au moins surR2nf(0;0)get pour(x;y)6=

(0;0), D"autre part, pour(x;y)6= (0;0)f(x;y) =f(y;x). Donc pour(x;y)6= (0;0), f(x;0)f(0;0)x0=00x =0, et donc lim des dérivées partielles premières surR2définies par y(x4+4x2y2y4)(x2+y2)2si(x;y)6= (0;0) x(x44x2y2y4)(x2+y2)2si(x;y)6= (0;0)

0 si(x;y) = (0;0).

fonction fest au moins de classeC1surR2.Correction del"exer cice3 NOn poseD=f(x;0);x2RgpuisW=R2nD. •fest définie surR2. •fest de classeC1surWen vertu de théorèmes généraux et pour(x;y)2W, xcosxy • Etudions la continuité defen(0;0). Pour(x;y)6= (0;0), jf(x;y)f(0;0)j=8 :y

2sinxy

siy6=0

0 siy=06(y2siy6=0

0 siy=06y2.

Commey2tend vers 0 quand(x;y)tend vers 0, lim(x;y)!(0;0) (x;y)6=(0;0)f(x;y) =f(0;0)et doncfest continue en(0;0)puis fest continue surR2. • Etudions l"existence et la valeur éventuelle de f(x;0)f(x0;0)xx0=00xx0=0. 5 Donc

Finalement, la fonction

:ycosxy siy6=0

0 siy=0.

• Etudions l"existence et la valeur éventuelle de f(x0;y)f(x0;0)y0=y2sin(x0y )y =ysinx 0y

On en déduit que

existe et :2ysinxy xcosxy siy6=0

0 siy=0.

• Etudions la continuité de :jyjcosxy siy6=0

0 siy=06jyj.

La fonction

la fonction • Etudions la continuité de

2ysinxy

xcosxy siy6=0

0 siy=062jyj+jxj.

(0;0). 0y x0cosx 0y . Quandytendvers0, 2ysinx 0y tend vers 0 car

2ysinx

0y etx0cosx 0y fest de classeC1surW[f(0;0)g. • Etudions l"existence et la valeur éventuelle de =0. Donc • Etudions l"existence et la valeur éventuelle de 6 )y =1. Donc a montré que de classeC2surW[f(0;0)g.Correction del"exer cice4 NSoit(x;y;z;t)2R4. j(x;y) = (z;t),exey=z x+y=t,y=tx e xetx=z,y=tx (ex)2zexet=0 ,y=tx e x=zpz

2+4etouex=z+pz

2+4et ex=z+pz 2+4et y=tx(carzpz

2+4et

2=zjzj60)

x=ln(z+pz

2+4et)

y=tln(z+pz

2+4et)(carz+pz

2+4et>z+pz

2=z+jzj>0):

Ainsi, tout élément(z;t)2R2a un antécédent et un seul dansR2parjet doncjest une bijection deR2sur

lui-même. La fonctionjest de classeC1surR2de jacobienJj(x;y) =exey 1 1 =ex+ey. Le jacobien dejne

s"annule pas surR2. En résumé,jest une bijection deR2sur lui-même, de classeC1surR2et le jacobien de

jne s"annule pas surR2. On sait alors que

jest unC1-difféomorphisme deR2sur lui-même.Correction del"exer cice5 NSoitn2N. Soitx2R. La fonctionfx:y7!y2n+1+yxest continue et strictement croissante surRen tant

que somme de fonctions continues et strictement croissantes surR. Donc la fonctionfxréalise une bijection de

Rsur]limy!¥fx(y);limy!+¥fx(y)[=R. En particulier, l"équationfx(y) =0 a une et une seule solution dans

Rque l"on notej(x).

La fonctionf:(x;y)7!y2n+1+yxest de classeC1surR2qui est un ouvert deR2et de plus,8(x;y)2R2,

définie par l"égalitéf(x;y) =0 est dérivable en tout réelxet de plus, en dérivant l"égalité8x2R,(j(x))2n+1+

j(x)x=0, on obtient8x2R,(2n+1)j0(x)(j(x))2n+j0(x)1=0 et donc

8x2R,j0(x) =1(2n+1)(j(x))2n+1.

Montrons par récurrence que8p2N, la fonctionjestpfois dérivable surR. - C"est vrai pourp=1.

- Soitp>1. Supposons que la fonctionjsoitpfois dérivable surR. Alors la fonctionj0=1(2n+1)j2n+1est

pfois dérivable surRen tant qu"inverse d"une fonctionpfois dérivable surRne s"annulant pas surR. On en

déduit que la fonctionjestp+1 fois dérivable surR. On a montré par récurrence que8p2N, la fonctionjestpfois dérivable surRet donc que la fonctionjest de classeC¥surR.7

Calculons maintenantI=R2

0j(t)dt. On note tout d"abord que, puisque 02n+1+00=0, on aj(0) =0 et

puisque 1

2n+1+12=0, on aj(2) =1.

Maintenant, pour tout réelxde[0;2], on aj0(x)(j(x))2n+1+j0(x)j(x)xj0(x) =0 (en multipliant parj0(x)

les deux membres de l"égalité définissantj(x)) et en intégrant sur le segment[0;2], on obtient

R 2

0j0(x)(j(x))2n+1dx+R2

0j0(x)j(x)dxR2

0xj0(x)dx=0().

Or, R2

0j0(x)(j(x))2n+1dx=h(j(x))2n+22n+2i

2

0=12n+2. Demême,R2

0j0(x)j(x)dx=h(j(x))22

i 2 0=12 etdoncR2

0j0(x)(j(x))2n+1dx+

R2

0j0(x)j(x)dx=12n+2+12

=n+22n+2. D"autre part, puisque les deux fonctionsx7!xetx7!j(x)sont de classe C

1sur le segment[0;2], on peut effectuer une intégration par parties qui fournit

R2

0xj0(x)dx= [xj(x)]2

0+R2

0j(x)dx=2+I.

L"égalité()s"écrit doncn+22n+22+I=0 et on obtientI=3n+22n+2. R 2

0j(x)dx=3n+22n+2.Correction del"exer cice6 NSoitx2R. La fonctionfx:y7!ex+y+y1 est continue et strictement croissante surRen tant que somme

de fonctions continues et strictement croissantes surR. Donc la fonctionfxréalise une bijection deRsur

]limy!¥fx(y);limy!+¥fx(y)[=R. En particulier, l"équationfx(y) =0 a une et une seule solution dansRque

l"on notej(x). La fonctionf:(x;y)7!ex+y+y1 est de classeC1surR2qui est un ouvert deR2et de plus,8(x;y)2R2,

l"égalitéf(x;y) =0 est dérivable en tout réelxet de plus, en dérivant l"égalité8x2R,ex+j(x)+j(x)1=0,

on obtient8x2R,(1+j0(x))ex+j(x)+j0(x) =0 ou encore

8x2R,j0(x) =ex+j(x)e

x+j(x)+1().

On en déduit par récurrence quejest de classeC¥surRet en particulier admet en 0 un développement limité

d"ordre 3. Déterminons ce développement limité.

1ère solution.Puisquee0+0+01=0, on aj(0) =0. L"égalité()fournit alorsj0(0) =12

et on peut poser j(x) =x!012 x+ax2+bx3+o(x3). On obtient e x+j(x)=x!0ex2 +ax2+bx3+o(x3) x!01+x2 +ax2+bx3 +12 x2 +ax22+16 x2

3+o(x3)

x!01+x2 a+18 x 2+ b+a2 +148
x

3+o(x3):

L"égalitéex+j(x)+j(x)1=0 fournit alorsa+18

+a=0 etb+a2 +148
+b=0 ou encorea=116 etb=1192

2ème solution.On a déjàj(0) =0 etj0(0) =0. En dérivant l"égalité(), on obtient

j

00(x) =(1+j0(x))ex+j(x)(ex+j(x)+1)(1+j0(x))ex+j(x)(ex+j(x))(

ex+j(x)+1)2=(1+j0(x))ex+j(x)( ex+j(x)+1)2, et donc j00(0)2 =12222=116 . De même, j (3)(x) =j00(x)ex+j(x)( ex+j(x)+1)2(1+j0(x))ex+j(x)(1+j0(x))( ex+j(x)+1)3, 8 et donc j(3)(0)6 =16 18 14 12 1=24 +12 18 =1192 . La formule de TAYLOR-YOUNGrefournit alors j(x) =x!0x2 x216 +x3384

+o(x3).Correction del"exer cice7 NOn dérive par rapport àlles deux membres de l"égalitéf(lx) =lrf(x)et on obtient

et pourl=1, on obtient deR2,(x0;y0)est un point critique def. d f (x;y)=0,3x2+6xy15=0

3x212=0,x=2

y=14 oux=2 y=14 Réciproquement,r=6x+6y,t=0 ets=6xpuisrts2=36x2. Ainsi,(rts2)2;14 = (rt s

2)2;14

=144<0 etfn"admet pas d"extremum local en2;14 ou2;14

fn"admet pas d"extremum local surR2.2.La fonction fest de classeC1surR2en tant que polynôme à plusieurs variables. Donc, sifadmet un

extremum local en(x0;y0)2R2,(x0;y0)est un point critique def. Soit(x;y)2R2. 8

4(xy)+4y3=0,x3+y3=0

4(xy)+4x3=0,y=x

x 32x=0
quotesdbs_dbs35.pdfusesText_40

[PDF] montrer que f est differentiable en (0 0)

[PDF] les différents types dhabitation

[PDF] les différents habitats dans le monde ce2

[PDF] procédé qui consiste ? faire passer une espèce chimique d'un mélange ? un solvant

[PDF] procédé qui consiste ? séparer une espèce chimique d'un mélange

[PDF] technique d'extraction liquide-liquide

[PDF] fonctionnement du corps humain pdf

[PDF] cours d'environnement pdf

[PDF] économie de lenvironnement pdf

[PDF] problématique liée ? l'environnement

[PDF] procédés de l'ironie voltairienne

[PDF] contrôle de substance définition

[PDF] les types du conte populaire

[PDF] types de contes pdf

[PDF] la structure narrative du conte