[PDF] Systèmes déquations linéaires





Previous PDF Next PDF



Systèmes linéaires1

résoudre des systèmes linéaires avec ou sans paramètres et que vous connaissiez les propriétés exposées dans les sections 3 et 5.



TD 3: systèmes linéaires

Systèmes avec paramètres. Exercice 10. Résoudre les systèmes d'inconnues les nombres réels x y et z et de paramètre le réel m :.



Math S2 PeiP Chapitre 3 Systèmes linéaires et méthode du pivot de

avec a paramètre (donnée variable) dans (S3). on s'intéresse aux systèmes linéaires (S) à n équations ... 1.4 Résolution des systèmes échelonnés.



Systèmes déquations linéaires

Systèmes d'équations linéaires Résoudre le système : x1 +x2 = 0 xk-1 +xk +xk+1 = 0 pour k = 2



Fascicule dexercices

1.2 Résolution de systèmes linéaires avec paramètres . Avec ces informations on trouve que Manon a passé 15 sur Instagram et. Paul 10. Exercice 2.



RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

La rubrique d'aide qui suit s'attardera aux problèmes de résolution de systèmes de deux équations linéaires et deux variables.



Systèmes déquations linéaires

Systèmes d'équations linéaires. Corrections d'Arnaud Bodin. Exercice 1. 1. Résoudre de quatre manières différentes le système suivant (par substitution 



Chapitre

Systèmes. 1.1 Systèmes linéaires avec paramètres. Il faut être particulièrement prudent lors de la résolution de systèmes linéaires utilisant des paramètres 



Systèmes d’équations linéaires avec paramètres (5 exercices)

Syst`emes d'équations linéaires avec param`etres. Énoncés. ´Enoncés des exercices. Exercice 1 [ Indication ] [ Correction ]. Résoudre le syst`eme (S).



[PDF] Systèmes linéaires dépendant de paramètres : Exercices corrigés

et concluons : • 1 solution unique lorsque h = 9; • une infinité de solutions quand h = 9 et k = 6; • aucune solution lorsque h = 9 mais k = 6 Exercice 10 ( 



[PDF] Systèmes linéaires - Exo7 - Cours de mathématiques

où a b et e sont des paramètres réels a et b n'étant pas simultanément nuls Une solution du système linéaire est une liste de p nombres réels (s1s2 



[PDF] Systèmes déquations linéaires - Exo7 - Exercices de mathématiques

7x+2y+(m-5)z = 7 ? 7 3+(m-6)y 5 +3y+(m-5) 14-(2m+3)y 5 = 7 ? 21+14(m-5)-35 = 0 ? 14(m-6) = 0 ? m = 6 Si m = 1 le système n'a pas de solution et si 



[PDF] Systèmes linéaires

Définition d'un système linéaire Forme générale Opérations 3 Méthode du pivot de Gauss Description Système échelonné Résolution Discussion



[PDF] Systèmes linéaires1 - ceremade

L'objectif est que vous sachiez résoudre des systèmes linéaires avec ou sans paramètres et que vous connaissiez les propriétés exposées dans les sections 3 et 5 



[PDF] Ift 2421 Chapitre 3 Résolution des systèmes déquations linéaires

Méthode de Cramer Si A x = b est un système de n équations avec n inconnues tel que det (A) ? 0 alors le système a une solution unique qui est



[PDF] RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

La rubrique d'aide qui suit s'attardera aux problèmes de résolution de systèmes de deux équations linéaires et deux variables



[PDF] Fascicule dexercices - Julie Scholler

1 2 Résolution de systèmes linéaires avec paramètres On appliquera la méthode de Gauss sur la matrice des coefficients et on donnera le rang de cette 



[PDF] TD 3: systèmes linéaires

Résoudre dans R les systèmes linéaires suivants d'inconnues x y et z : systèmes d'inconnues les nombres réels x y et z et de paramètre le réel m :



[PDF] Systèmes d’équations linéaires avec paramètres (5 exercices)

Indication pour l'exercice 2 [ Retour `a l'énoncé ] – Si m = 2 le syst`eme n'a pas de solution – Si m = 0 la solution générale est (x y z) = (40?2) 

:
Exo7

Systèmes d"équations linéaires

Corrections d"Arnaud Bodin

Exercice 11.Résoudre de quatre manières dif férentesle système sui vant(par substitution, par la méthode du pi votde

Gauss, en inversant la matrice des coefficients, par la formule de Cramer) :

2x+y=1

3x+7y=2

2.

Choisir la méthode qui v ousparaît la plus rapide pour résoudre, selon les v aleursde a, les systèmes

suivants : ax+y=2 (a2+1)x+2ay=1 (a+1)x+ (a1)y=1 (a1)x+ (a+1)y=1

Résoudre les systèmes suivants

8< :x+yz=0 xy=0 x+4y+z=08 :x+y+2z=5 xyz=1 x+z=38 :3xy+2z=a x+2y3z=b x+2y+z=c

Trouver les solutions de

8>>< >:3x+2z=0

3y+z+3t=0

x+y+z+t=0

2xy+zt=0

Étudier l"existence de solutions du système : 8< :ax+by+z=1 x+aby+z=b x+by+az=1: 1 Discuter et résoudre suivant les valeurs des réelsl,a,b,c,dle système : (S)8 >:(1+l)x+y+z+t=a x+(1+l)y+z+t=b x+y+(1+l)z+t=c x+y+z+(1+l)t=d Z 4

2P(x)dx=aP(2)+bP(3)+gP(4):

Indication pourl"exer cice6 NÉcrire les polynômes sous la formeP(x) =ax3+bx2+cx+d. CalculerR4

2P(x)dxd"une part etaP(2)+

bP(3)+gP(4)d"autre part. L"identification conduit à un système linéaire à quatre équations, d"inconnues

a;b;g.3

Correction del"exer cice1 N1.(a) Par substitution.La première équation s"écrit aussiy=12x. On remplace maintenantydans la

deuxième équation

3x+7y=2=)3x+7(12x) =2=)11x=9=)x=911

Onendéduity:y=12x=12911

=711 . Lasolutiondecesystèmeestdonclecouple(911 ;711 N"oubliez pas de vérifier que votre solution fonctionne ! (b)Par le pivot de Gauss.On garde la ligneL1et on remplace la ligneL2par 2L23L1:

2x+y=1

3x+7y=2()2x+y=1

11y=7 Onobtientunsystèmetriangulaire: onendéduity=711 etalorslapremièrelignepermetd"obtenir x=911 (c)Par les matrices.En terme matriciel le système s"écrit

AX=YavecA=2 1

3 7 X=x y Y=1 2 On trouve la solution du système en inversant la matrice :

X=A1Y:

L"inverse d"une matrice 22 se calcule ainsi

siA=a b c d alorsA1=1adbc db c a Il faut bien sûr que le déterminant detA=a b c d =adbcsoit différent de 0.

Ici on trouve

A 1=111 71
3 2 etX=A11 2 =111 9 7

(d)Par les formules de Cramer.Les formules de Cramer pour un système de deux équations sont les

suivantes si le déterminant vérifieadbc6=0 : ax+by=e cx+dy=f=)x= e b f d a b c d ety= a e c f a b c d

Ce qui donne ici :

x= 1 1 2 7 2 1 3 7 911
ety= 2 1 32
2 1 3 7 =711 2. (a)

A vanttout on re gardes"il e xisteune solution unique, c"est le cas si et seulement si le déterminant

est non nul. Pour le premier système le déterminant esta1 a

2+1 2a

=a21 donc il y a une unique solution si et seulement sia6=1.

Biensûrtouteslesméthodesconduisentaumêmerésultat! Parexempleparsubstitution, enécrivant

la première ligney=2ax, la deuxième ligne devient(a2+1)x+2a(2ax) =1. On en déduit que sia6=1 alorsx=4a1a

21puisy=2a2+a2a

21.
4 Traitons maintenant les cas particuliers. Sia=1 alors le système devient :x+y=2

2x+2y=1

Mais on ne peut avoir en même tempsx+y=2 etx+y=12 . Donc il n"y a pas de solution.

Sia=1 alors le système devient :x+y=2

2x2y=1et il n"y a pas de solution.

(b)

Ici le déterminant est

a+1a1 a1a+1 = (a+1)2(a1)2=4a. Sia6=0 alors on trouve la solution unique(x;y). Par exemple avec la formule de Cramer x= 1a1 1a+1

4a=12aety=

a+1 1 a1 1

4a=12a:

Sia=0 il n"y a pas de solution.Correction del"exer cice2 N1.Remarquons que comme le système est homogène (c"est-à-dire les coef ficientsdu second membre sont

nuls) alors(0;0;0)est une solution du système. Voyons s"il y en a d"autres. Nous faisons semblant

de ne pas voir que la seconde ligne impliquex=yet que le système est en fait très simple à résoudre.

Nous allons appliquer le pivot de Gauss en faisant les opérations suivantes sur les lignesL2 L2L1et

L

3 L3L1:

8< :x+yz=0 xy=0 x+4y+z=0()8 :x+yz=0

2y+z=0

3y+2z=0

On fait maintenantL3 2L3+3L2pour obtenir :

8< :x+yz=0

2y+z=0

7z=0 En partant de la dernière ligne on trouvez=0, puis en remontanty=0, puisx=0. Conclusion l"unique solution de ce système est(0;0;0). 2.

On applique le pi votde Gauss L2 L2L1etL3 L3L1:

8< :x+y+2z=5 xyz=1 x+z=3()8 :x+y+2z=5

2y3z=4

yz=2

PuisL3 2L3L2pour obtenir un système équivalent qui est triangulaire donc facile à résoudre :

8< :x+y+2z=5

2y3z=4

z=0()8 :x=3 y=2 z=0 On n"oublie pas de vérifier que c"est une solution du système initial. 3. On f aitles opérations L2 3L2+L1etL3 3L3L1pour obtenir : 8< :3xy+2z=a x+2y3z=b x+2y+z=c()8 :3xy+2z=a

5y7z=3b+a

7y+z=3ca

5 Puis on faitL3 5L37L2, ce qui donne un système triangulaire : 8< :3xy+2z=a

5y7z=3b+a

54z=5(3ca)7(3b+a)

En partant de la fin on en déduit :z=154

(12a21b+15c)puis en remontant cela donne 8< :x=118 (8a+5bc) y=118 (2a+b+7c) z=118 (4a7b+5c)Correction del"exer cice3 NOn commence par simplifier le système : on place la ligne L3en première position pour le pivot de Gauss ; on réordonne les v ariablesdans l"ordre : y;t;x;zpour profiter des lignes déjà simples. 8>>< >:y+t+x+z=0

3y+3t+z=0

yt+2x+z=0

3x+2z=0

On commence le pivot de Gauss avec les opérationL2 L23L1etL3 L3+L1pour obtenir : 8>>< >:y+t+x+z=0

3x2z=0

3x+2z=0

quotesdbs_dbs35.pdfusesText_40
[PDF] comment discuter un sujet de dissertation

[PDF] ic60n

[PDF] disjoncteur tétrapolaire schneider

[PDF] ic60 schneider pdf

[PDF] disjoncteur ic60h

[PDF] schneider ic60n

[PDF] acti9 schneider pdf

[PDF] fiche technique disjoncteur schneider

[PDF] disjoncteur 16a legrand

[PDF] catalogue legrand 2017

[PDF] legrand 4067 74

[PDF] disjoncteur legrand

[PDF] disjoncteur différentiel

[PDF] courbe de declenchement b c d

[PDF] disjoncteur c32h merlin gerin