[PDF] Équations différentielles Exercice 3. 1. Résoudre





Previous PDF Next PDF



Equations différentielles L3 de Mathématiques

L3 de Mathématiques 3 Équations différentielles non linéaires ... le cours de L2 sur la réduction des endomorphismes on a vu qu'il existait une matrice ...



Notes et exercices du cours dÉquations Différentielles

1 nov. 2017 Supposons qu'il existe une sur-solution ? de. 10. Page 14. Quelques notions du cours. L3 Équations différentielles classe C1 sur [a



Calcul différentiel équations différentielles

25 juil. 2013 Licence 3 Mathématiques parcours B ... A l'oral : Dans ce cours



Fiche exercices (avec corrigés) - Equations différentielles

Licence 1 - DLST Donner l'ensemble des solutions des équations différentielles suivantes : ... L'équation est y/(x) - 4 y(x)=3: a(x) = -4 et f(x)=3.



L3 – COURS DE CALCUL DIFFÉRENTIEL

9.1 La résolution d'un syst`eme d'équations . Le propos principal du cours de Calcul Différentiel de L3 est l'étude des deux notions fondamentales ...



Cours de mathématiques - Exo7

3. 2y ? 3y + 5y = 0 est une équation différentielle linéaire du second ordre à coefficients constants sans second membre. 4. y 



Équations différentielles

Exercice 3. 1. Résoudre l'équation différentielle (x2 +1)y +2xy = 3x2 +1 sur R. Tracer des courbes intégrales. Trou- ver la solution vérifiant y(0) = 3.



livre-analyse-1.pdf - Exo7 - Cours de mathématiques

3. Équation différentielle linéaire du second ordre à coefficients constants . l3. Une valeur l vérifiant f (l) = l est un point fixe de f .



- FICHE DE COURS CHAPITRE SUR LES EQUATIONS

"Livret mis à disposition selon les termes de la Licence Creative Commons" Page 3. Map de synthèse sur les équations différentielles du 2nd ordre.



Equations différentielles ordinaires Etudes qualitatives

Equations différentielles ordinaires. Etudes qualitatives. Cours. M304 – L3 MFA. D. Hulin. Université Paris-Sud. Octobre 2020 



[PDF] Cours déquations différentielles - Mathématiques à Angers

Nous commencerons ce cours d'équations différentielles par quelques exem- ples pour fixer les idées Une équation différentielle est une équation liant



[PDF] L3 – COURS DE CALCUL DIFFÉRENTIEL

Le propos de ce cours est de résumer les propriétés des les ensembles décrits par la géométrie différentielle c'est `a dire décrits `a l'aide d'équations 



[PDF] Notes de cours Équations différentielles ordinaires

Notes de cours Équations différentielles ordinaires Licence de mathématiques Université d'Aix-Marseille Version du 17 novembre 2022



[PDF] Chapitre 3 Equations différentielles ordinaires

Chapitre 3 Equations différentielles ordinaires 3 1 Introduction Qu'est-ce que c'est une équation différentielle ordinaire? C'est une



[PDF] Equations et syst`emes différentiels 3 Année Mathématiques

Deuxi`eme chapitre traite des équations différentielles d'ordre deux le troisi`eme chapitre étudie les équations différentielles d'un coté théorique en 



[PDF] Equations Différentielles Ordinaires et Partielles

COURS de Mathématiques III - Analyse Laurent Pujo-Menjouet Une équation différentielle ordinaire également notée EDO d'ordre n est une relation



[PDF] Équations différentielles Cours de L3 par Frédéric - IMJ-PRG

Théorème 4 1 Soit X ? C1(?Rn) et soit a ? ? un point d'équilibre stable Alors toutes les valeurs propres de dXa sont de partie réelle négative ou nulle



[PDF] Équations différentielles Cours de L3 par Frédéric - IMJ-PRG

Équations différentielles Cours 2 4 La solution des équations linéaires à coefficients constants Université de Paris Licence 3 de Mathématiques 



[PDF] Notes et exercices du cours dÉquations Différentielles - HAL

1 nov 2017 · Supposons qu'il existe une sur-solution ? de 10 Page 14 Quelques notions du cours L3 Équations différentielles classe C1 sur [a b] 



[PDF] Équations différentielles - Lycée dAdultes

13 avr 2021 · 1 Équation différentielle linéaire du premier ordre 3 1 5 Résolution de l'équation linéaire à coefficients constants 5

:
Exo7

Équations différentielles

Fiche de Léa Blanc-Centi.

1 Ordre 1

Exercice 1Résoudre surRles équations différentielles suivantes:

1.y0+2y=x2(E1)

2.y0+y=2sinx(E2)

3.y0y= (x+1)ex(E3)

4.y0+y=xex+cosx(E4)

Déterminer toutes les fonctionsf:[0;1]!R, dérivables, telles que

8x2[0;1];f0(x)+f(x) =f(0)+f(1)

1.

Résoudre l"équationdifférentielle(x2+1)y0+2xy=3x2+1surR. Tracerdescourbesintégrales. Trouver

la solution vérifianty(0) =3. 2.

Résoudre l"équation dif férentielley0sinxycosx+1=0 sur]0;p[. Tracer des courbes intégrales.

Trouver la solution vérifianty(p4

) =1. de la constante :

1.y0(2x1x

)y=1 sur]0;+¥[

2.y0y=xkexp(x)surR, aveck2N

3.x(1+ln2(x))y0+2ln(x)y=1 sur]0;+¥[

On considère l"équation différentielle

y

0exey=a

Déterminer ses solutions, en précisant soigneusement leurs intervalles de définition, pour 1 1.a=0

2.a=1 (faire le changement de fonction inconnuez(x) =x+y(x))

Dans chacun des cas, construire la courbe intégrale qui passe par l"origine.

Pour les équations différentielles suivantes, trouver les solutions définies surRtout entier :

1.x2y0y=0(E1)

2.xy0+y1=0(E2)

Exercice 7Résoudre

1.y003y0+2y=0

2.y00+2y0+2y=0

3.y002y0+y=0

4.y00+y=2cos2x

On considèrey004y0+4y=d(x). Résoudre l"équation homogène, puis trouver une solution particulière

lorsqued(x) =e2x, puisd(x) =e2x. Donner la forme générale des solutions quandd(x) =12 ch(2x). Résoudre sur]0;p[l"équation différentielley00+y=cotanx, où cotanx=cosxsinx.

Résoudre les équations différentielles suivantes à l"aide du changement de variable suggéré.

1.x2y00+xy0+y=0, sur]0;+¥[, en posantx=et;

2.(1+x2)2y00+2x(1+x2)y0+my=0, surR, en posantx=tant(en fonction dem2R).

3 Pour aller plus loin

Exercice 11Équations de Bernoulli et Riccatti1.Équation de Bernoulli (a)

Montrer que l"équation de Bernoulli

y

0+a(x)y+b(x)yn=0n2Zn6=0;n6=1

se ramène à une équation linéaire par le changement de fonctionz(x) =1=y(x)n1. (b) T rouverles solutions de l"équation xy0+yxy3=0.

2.Équation de Riccati

(a) Montrer que si y0est une solution particulière de l"équation de Riccati y

0+a(x)y+b(x)y2=c(x)

alors la fonction définie paru(x) =y(x)y0(x)vérifie une équation de Bernoulli (avecn=2). (b) Résoudre x2(y0+y2) =xy1 en vérifiant d"abord quey0(x) =1x est une solution. 1. Montrer que toute solution sur Rdey0+ex2y=0 tend vers 0 en+¥. 2.

Montrer que toute solution sur Rdey00+ex2y=0 est bornée. (Indication :étudier la fonction auxiliaire

u(x) =y(x)2+ex2y0(x)2.) 1.

Résoudre sur ]0;+¥[l"équation différentiellex2y00+y=0 (utiliser le changement de variablex=et).

2. T rouvertoutes les fonctions de classe C1surRvérifiant

8x6=0;f0(x) =f1x

Indication pourl"exer cice2 NUne telle fonctionfest solution d"une équation différentielley0+y=c.Indication pourl"exer cice3 N1.xest solution particulière

2. cos est solution particulière Indication pourl"exer cice4 NSolution particulière : 1.12x 2. xk+1k+1exp(x) 3. lnx1+ln2(x)Indication pourl"exer cice5 N1. C"est une équation à variables séparées.

Indication pour

l"exer cice

6 N1.une infinité de solutions

2. une solution Indication pourl"exer cice8 NPour la fin: principe de superposition.

Indication pour

l"exer cice

9 NUtiliser la méthode de variation de la constante.

Indication pour

l"exer cice

11 N1.(a) Se ramener à

11nz0+a(x)z+b(x) =0.

(b)y=1plx2+2xouy=0. 2. (a)

Remplacer yparu+y0.

(b)y=1x +1xlnjxj+lxouy=1x .4

Correction del"exer cice1 N1.Il s"agit d"une équation dif férentiellelinéaire d"ordre 1, à coef ficientsconstants, a vecsecond membre.

Oncommenceparrésoudrel"équationhomogèneassociéey0+2y=0: lessolutionssontlesy(x)=le2x, l2R.

Il suffit ensuite de trouver une solution particulière de(E1). Le second membre étant polynomial de degré

2, on cherche une solution particulière de la même forme:

y

0(x) =ax2+bx+cest solution de(E1)

() 8x2R;y00(x)+2y0(x) =x2 () 8x2R;2ax2+(2a+2b)x+b+2c=x2 Ainsi, en identifiant les coefficients, on voit quey0(x) =12 x212 x+14 convient.

Les solutions de(E1)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =12 x212 x+14 +le2x(x2R) oùlest un paramètre réel. 2.

Il s"agit d"une équation dif férentiellelinéaire d"ordre 1, à coef ficientsconstants, a vecsecond membre.

Les solutions de l"équation homogène associéey0+y=0 sont lesy(x) =lex,l2R.

Il suffit ensuite de trouver une solution particulière de(E2). Le second membre est cette fois une fonction

trigonométrique, on cherche une solution particulière sous la forme d"une combinaison linéaire de cos et

sin: y

0(x) =acosx+bsinxest solution de(E2)

() 8x2R;y00(x)+y0(x) =2sinx () 8x2R;(a+b)cosx+(a+b)sinx=2sinx Ainsi, en identifiant les coefficients, on voit quey0(x) =cosx+sinxconvient.

Les solutions de(E2)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =cosx+sinx+lex(x2R) oùlest un paramètre réel. 3.

Les solutions de l"équation homogène associée y0y=0 sont lesy(x)=lex,l2R. On remarque que le

second membre est le produit d"une fonction exponentielle par une fonction polynomiale de degréd=1:

or la fonction exponentielle du second membre est la même (ex) que celle qui apparaît dans les solutions

de l"équation homogène. On cherche donc une solution particulière sous la forme d"un produit deexpar

une fonction polynomiale de degréd+1=2: y

0(x) = (ax2+bx+c)exest solution de(E3)

() 8x2R;y00(x)y0(x) = (x+1)ex () 8x2R;(2ax+b)ex= (x+1)ex Ainsi, en identifiant les coefficients, on voit quey0(x) = (12 x2+x)exconvient.

Les solutions de(E3)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) = (12 x2+x+l)ex(x2R) oùlest un paramètre réel. 5

4.Les solutions de l"équation homogène associée y0+y=0 sont lesy(x) =lex,l2R. On remarque que

le second membre est la somme d"une fonction polynomiale de degré 1, d"une fonction exponentielle

(différente deex) et d"une fonction trigonométrique. D"après le principe de superposition, on cherche

donc une solution particulière sous la forme d"une telle somme: y

0(x) =ax+b+mex+acosx+bsinxest solution de(E4)

() 8x2R;y00(x)+y0(x) =xex+cosx () 8x2R;ax+a+b+2mex+(a+b)cosx+(a+b)sinx=xex+cosx Ainsi, en identifiant les coefficients, on voit que y

0(x) =x112

ex+12 cosx+12 sinx convient.

Les solutions de(E4)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =x112 ex+12 cosx+12 sinx+lex(x2R)

oùlest un paramètre réel.Correction del"exer cice2 NUne fonctionf:[0;1]!Rconvient si et seulement si

•fest dérivable •fest solution dey0+y=c •fvérifief(0)+f(1) =c(oùcest un réel quelconque)

Or les solutions de l"équation différentielley0+y=csont exactement lesf:x7!lex+c, oùl2R(en effet,

on voit facilement que la fonction constante égale àcest une solution particulière dey0+y=c). Évidemment

ces fonctions sont dérivables, etf(0)+f(1) =l(1+e1)+2c, donc la troisième condition est satisfaite si et

seulement sil(1+e1) =c. Ainsi les solutions du problème sont exactement les f(x) =l(ex1e1)

pourl2R.Correction del"exer cice3 N1.Comme le coef ficientde y0ne s"annule pas, on peut réécrire l"équation sous la forme

y 0+2xx

2+1y=3x2+1x

2+1 (a)

Les solutions de l"équation homogène associée sont les y(x) =leA(x), oùAest une primitive de

a(x) =2xx

2+1etl2R. Puisquea(x)est de la formeu0u

avecu>0, on peut choisirA(x) = ln(u(x))oùu(x) =x2+1. Les solutions sont donc lesy(x) =leln(x2+1)=lx 2+1. (b)

Il suf fitensuite de trouv erune solution particulière de l"équation a vecsecond membre: on remarque

quey0(x) =xconvient. (c)

Les solutions sont obtenues en f aisantla somme:

y(x) =x+lx

2+1(x2R)

oùlest un paramètre réel. 6 (d)y(0) =3 si et seulement sil=3. La solution cherchée est doncy(x) =x+3x 2+1. Voici les courbes intégrales pourl=1;0;:::;5.011 2.

On commence par remarquer que y0(x) =cosxest une solution particulière. Pour l"équation homogène:

sur l"intervalle considéré, le coefficient dey0ne s"annule pas, et l"équation se réécrit

y

0cosxsinxy=0

Les solutions sont lesy(x) =leA(x), oùl2RetAest une primitive dea(x) =cosxsinx. Puisquea(x)est de la forme u0u avecu>0, on peut choisirA(x)=ln(u(x))avecu(x)=sinx. Les solutions de l"équation sont donc lesy(x) =leln(sinx)=lsinx. Finalement, les solutions de l"équation sont les y(x) =cosx+lsinx oùlest un paramètre réel. 3. On a y(p4 ) =1()cosp4 +lsinp4 =1()p2quotesdbs_dbs35.pdfusesText_40
[PDF] aide dm de math 3eme

[PDF] mesures de longueurs cm1-cm2

[PDF] un maitre nageur dispose d un cordon flottant

[PDF] vocabulaire mathématique opération

[PDF] exercice maths l'apprenti bijoutier

[PDF] sigma statistique

[PDF] symbole sigma clavier

[PDF] abscisse ordonnée x y

[PDF] physique chimie 4eme pdf

[PDF] dm physique chimie 4eme electricite

[PDF] les tamis sont-ils des filtres

[PDF] coup de chaleur

[PDF] l'adolescent souffleté analyse

[PDF] convertisseur analogique numérique exercices corrigés

[PDF] convertisseur analogique numérique cours pdf