[PDF] Cours de Statistiques inférentielles





Previous PDF Next PDF



Introduction à la statistique inférentielle

Connaissant les valeurs prises par une variable sur un échantillon la statistique inférentielle essaie de préciser la distribution de la.



Cours de Statistiques inférentielles

x est un entier positif ou nul est remplacé par P(X ? x + 0 5). Définition 8 On appelle statistique sur un n-échantillon une fonction de (X1



STATISTIQUE INFERENTIELLE

probabilité : La répartition d'une variable statistique X sur la population est décrite par une loi de probabilité : - Qui est caractérisée par une densité de 



Statistique Inférentielle

STATISTIQUE INFERENTIELLE POUR L'ECONOMIE ET LA GESTION Axiome 2: La probabilité associée à l'événement A est un nombre positif ou nul. Pour tout A:.



Cours 4: Statistique inférentielle Échantillonnage

La valeur prise par la variable statistique X pour un individu donné de la population ne peut pas être déterminée a priori et dépend d'un grand nombre de 



Cours de Statistiques (L1 – MAP 201)

14 févr. 2018 Premiers textes connus sur le calcul des hasards (ou des chances) au ... Statistique inférentielle : elle a pour but de faire des prévisions ...



1. Statistiques inférentielles

La population P ne peut pas être étudiée dans son entier. – soit la population est de très grande taille (onéreux long de faire une étude sur tous les 



Statistique Inférentielle

Modèle Statistique. Estimateurs - Propriétés. Construction d'estimateurs. Estimation par intervalles. Bibliographie. • Pagès J. Statistique générale pour 



CTU Licence de Mathématiques Statistique Inférentielle Jean-Yves

consiste à pouvoir se donner des outils statistiques pour décider entre deux hypothèses contient que le vecteur nul de Rn on parle de modèle échelle.



Cours de Statistiques Inférentielles

6 janv. 2016 Remarque sur l'intervalle de confiance pour une variance hors du cadre normal . ... principale de la statistique inférentielle.



[PDF] Cours de Statistiques inférentielles

LOIS STATISTIQUES 1 1 2 Grandeurs observées sur les échantillons L'espérance E(X) d'une variable aléatoire discrète X est donnée par la formule



[PDF] Introduction à la statistique inférentielle - Jonathan Lenoir

La statistique inférentielle s'appuie sur la théorie des probabilités Connaissant les valeurs prises par une variable sur un échantillon la statistique 



[PDF] Cours de Statistiques Inférentielles

6 jan 2016 · (qui concerne la majorité du cours) est la statistique inférentielle mathématique ou inductive On va encore restreindre la définition pour 



[PDF] STATISTIQUE INFERENTIELLE - FSEGSO -

Statistique descriptive et Statistique inférentielle La statistique descriptive s'intéresse à la sous-population formée par l'échantillon Elle a pour



[PDF] Statistique Inférentielle

La statistique inférentielle a un aspect décisionnel et le calcul des probabilités y joue un rôle fondamental en particulier pour calculer



[PDF] Statistiques Inférentielles

Le problème c'est qu'on ne connaît ni µ ni µx et idem pour les écarts-type Il va donc falloir faire des estimations II - Estimation ponctuelle On ne 



[PDF] Méthodes de statistique inférentielle

19 mai 2016 · Une estimation pour la population est 36 000 heures 2 Le responsable du parti Il constitue un échantillon de taille 400 Parmi les personnes



[PDF] Statistique Inférentielle

Une statistique utilisée pour estimer un paramètre ? est appelée estimateur et souvent Si le biais est nul on dira que T est un estimateur sans biais



[PDF] Statistique Inférentielle - Pages personnelles Université Rennes 2

Modèle Statistique Estimateurs - Propriétés Construction d'estimateurs Estimation par intervalles Bibliographie • Pagès J Statistique générale pour 



[PDF] Statistique Inférentielle

liser les principales méthodes de la statistique inférentielle suites de variables aléatoires) constitue un passage obligé pour donner des bases rigou-

  • Comment comprendre la statistique inférentielle ?

    Nous allons chercher à faire l'inverse : l'inférence statistique consiste à induire les caractéristiques in- connues d'une population à partir d'un échantillon issu de cette population. Les caractéristiques de l'échantillon, une fois connues, reflètent avec une certaine marge d'erreur possible celles de la population.
  • Quel est le but des statistiques inférentielles ?

    IV La statistique inférentielle. Son but est d'étendre (d'inférer) les propriétés constatées sur l'échantillon (gr? l'analyse exploratoire par exemple) `a la population toute enti`ere, et de valider ou d'infirmer des hypoth`eses.6 jan. 2016
  • Quelle est l'importance de la statistique inférentielle dans la société ?

    Le but de la statistique inférentielle est de savoir dans quelle mesure les résultats obtenus sur un échantillon convenablement choisi apportent une connaissance fiable des caractéristiques de la population d'origine.
  • En d'autres termes, une analyse inférentielle utilise un échantillon aléatoire de données provenant d'une population afin de décrire et d'inférer la population. En effet, cette analyse est pertinente lorsqu'il est difficile ou impossible d'examiner chacun des membres d'une population entière.

Licence 2-S4 SI-MASS

Année 2018Cours de Statistiques inférentielles

Pierre DUSART

2

Chapitre1Lois statistiques

1.1 Introduction

Nous allons voir que si une variable aléatoire suit une certaine loi, alors ses réalisations (sous forme

d"échantillons) sont encadrées avec des probabilités de réalisation. Par exemple, lorsque l"on a une énorme

urne avec une proportionpde boules blanches alors le nombre de boules blanches tirées sur un échan-

tillon de taillenest parfaitement défini. En pratique, la fréquence observée varie autour depavec des

probabilités fortes autour depet plus faibles lorsqu"on s"éloigne dep.

Nous allons chercher à faire l"inverse : l"inférence statistique consiste à induire les caractéristiques in-

connues d"une population à partir d"un échantillon issu de cette population. Les caractéristiques de

l"échantillon, une fois connues, reflètent avec une certaine marge d"erreur possible celles de la population.

1.1.1 Fonction de répartition

La densité de probabilitép(x)ou la fonction de répartitionF(x)définissent la loi de probabilité d"une

variable aléatoire continueX. Elles donnent lieu aux représentations graphiques suivantes :Figure1.1 - fonction répartition

La fonction de distribution cumuléeF(x)exprime la probabilité queXn"excède pas la valeurx:

F(x) =P(Xx):

De même, la probabilité que X soit entreaetb(b > a) vaut

P(a < X < b) =F(b)F(a):

4CHAPITRE 1. LOIS STATISTIQUES1.1.2 Grandeurs observées sur les échantillons

L"espéranceE(X)d"une variable aléatoire discrèteXest donnée par la formule

E(X) =X

ix iP(xi): L"espérance est également appelée moyenne et notée dans ce casX. Sa variance2Xest l"espérance des carrés des écarts avec la moyenne :

2X=E[(XX)2] =X

i(xiX)2P(xi) =X ix

2iP(xi)2X:

Son écart-typeXest la racine positive de la variance.

1.2 Lois usuelles

1.2.1 Loi normale ou loi de Gauss

Une variable aléatoire réelleXsuit une loi normale (ou loi gaussienne, loi de Laplace-Gauss) d"espérance

et d"écart type(nombre strictement positif, car il s"agit de la racine carrée de la variance2) si cette

variable aléatoire réelleXadmet pour densité de probabilité la fonctionp(x)définie, pour tout nombre

réelx, par : p(x) =1 p2e12 (x )2: Une telle variable aléatoire est alors dite variable gaussienne.

Une loi normale sera notée de la manière suivanteN(;)car elle dépend de deux paramètres(la

moyenne) et(l"écart-type). Ainsi si une variable aléatoireXsuitN(;)alors

E(X) =etV(X) =2:

Lorsque la moyennevaut 0, et l"écart-type vaut 1, la loi sera notéeN(0;1)et sera appelée loi normale

standard. Sa fonction caractéristique vautet2=2. Seule la loiN(0;1)est tabulée car les autres lois (c"est-

à-dire avec d"autres paramètres) se déduise de celle-ci à l"aide du théorème suivant : SiYsuitN(;)

alorsZ=Y suitN(0;1). On notela fonction de répartition de la loi normale centrée réduite : (x) =P(Z < x) avecZune variable aléatoire suivantN(0;1).

Propriétés et Exemples :(x) = 1(x),

(0) = 0:5;(1:645)0:95;(1:960)0:9750

Pourjxj<2, une approximation depeut être utilisée; il s"agit de son développement de Taylor à

l"ordre 5 au voisinage de 0 : (x)0:5 +1p2 xx36 +x540

Inversement, à partir d"une probabilité, on peut chercher la borne pour laquelle cette probabilité est

effective. Cours Proba-Stat / Pierre DUSART5Notation : on noteraz=2le nombre pour lequel

P(Z > z=2) ==2

lorsque la variable aléatoire suit la loi normale standard.risque0:010:020:050:10valeur critiquez=22:582:331:961:645coefficient de sécuritéc99%98%95%90%

A l"aide des propriétés de la loi normale standard, on remarque que le nombrez=2vérifie également

P(Z < z=2) =

P(Z

P(z=2< Z < z=2) =

P(jZj> z=2) =

La somme de deux variables gaussiennes indépendantes est elle-même une variable gaussienne (stabilité) :

SoientXetYdeux variables aléatoires indépendantes suivant respectivement les loisN(1;1)et N(2;2). Alors, la variable aléatoireX+Ysuit la loi normaleN(1+2;p

21+22).

1.2.2 Loi du2(khi-deux)

Définition 1SoitZ1;Z2;:::;Zune suite de variables aléatoires indépendantes de même loiN(0;1).

Alors la variable aléatoireP

i=1Z2isuit une loi appeléeloi du Khi-deuxàdegrés de liberté, notée 2(). Proposition 1.2.11. Sa fonction caractéristique est(12it)=2.

2. La densité de la loi du2()est

f (x) = 12 =2(=2)x=21ex=2pourx >0

0sinon.

oùest la fonction Gamma d"Euler définie par(r) =R1

0xr1exdx.

3. L"espérance de la loi du2()est égale au nombrede degrés de liberté et sa variance est2.

4. La somme de deux variables aléatoires indépendantes suivant respectivement2(1)et2(2)suit

aussi une loi du2avec1+2degrés de liberté. PreuveCalculons la fonction caractéristique deZ2lorsqueZsuitN(0;1). '(t) =E(eitZ2) =Z 1 1 eitz21p2ez2=2dz 1p2Z 1 1 e12 (12it)z2dz 1p2Z 1 1e 12 u2(12it)1=2dten posantu= (12it)1=2z '(t) = (12it)1=2 Maintenant pour la somme devariablesZ2iindépendantes, on a '(t) = (12it)=2:

6CHAPITRE 1. LOIS STATISTIQUESMontrons maintenant que la fonction de densité est correcte. Pour cela, calculons la fonction caractéris-

tique à partir de la densité : '(t) =E(eitx) =Z +1 0 eitx12 =2(=2)x=21ex=2dx 12 =2(=2)Z +1 0 x(1=2it)xdx 12 =2(=2)1(1=2it)(1=2it)=21Z +1 0 u=21euduen posantu= (1=2it)x 12 =2(=2)1(1=2it)=2Z +1 0 u=21eudu |{z} =(=2) '(t) =1(12it)=2

Calculons maintenant l"espérance et la variance. Selon la définition de la loi du2, chaque variable

Z isuit la loi normale centrée réduite. AinsiE(Z2i) =V ar(Zi) = 1etE(P i=1Z2i) =. De même, V(Zir) =E(Z4i)(E(Z2i))2=41:On sait que pour une loi normale centrée réduite4= 3donc

V ar(Z2i) = 2etV ar(P

i=1Z2i) = 2: La dernière proposition est évidente de par la définition de la loi du2.

Fonction inverse: on peut trouver une tabulation de la fonction réciproque de la fonction de répartition

de cette loi dans une table (en annexe) ou sur un logiciel tableur :

7!2;(FonctionKHIDEUX.inverse(;));

c"est-à-dire la valeur de2;telle queP(2()> 2;) =. Exemple : Pour= 0:990et= 5,2= 0:554 =20:99;5.Figure1.2 - fonction2inverse

1.2.3 Loi de Student

Définition 2SoientZetQdeux variables aléatoires indépendantes telles queZsuitN(0;1)etQsuit

2(). Alors la variable aléatoire

T=ZpQ=

suit une loi appeléeloi de Studentàdegrés de liberté, notéeSt().

Cours Proba-Stat / Pierre DUSART7Proposition 1.2.21. La densité de la loi de la loi de Student àdegrés de liberté est

f(x) =1p +12 )(=2)1(1 +x2=)+12

2. L"espérance n"est pas définie pour= 1et vaut 0 si2. Sa variance n"existe pas pour2et

vaut=(2)pour3.

3. La loi de Student converge en loi vers la loi normale centrée réduite.

Remarque : pour= 1, la loi de Student s"appelle loi de Cauchy, ou loi de Lorentz.

1.2.4 Loi de Fisher-Snedecor

Définition 3SoientQ1etQ2deux variables aléatoires indépendantes telles queQ1suit2(1)etQ2 suit2(2)alors la variable aléatoire

F=Q1=1Q

2=2 suit une loi de Fisher-Snedecor à(1;2)degrés de liberté, notéeF(1;2).

Proposition 1.2.3La densité de la loiF(1;2)est

f(x) =(1+22 )(1=2)(2=2) 1 2

1=2x1=21(1 +

1 2x) 1+22 six >0 (0sinon):

Son espérance n"existe que si23et vaut2

22. Sa variance n"existe que si25et vaut22

2(1+22)

1(22)2(24).

Proposition 1.2.41. SiFsuit une loi de FisherF(1;2)alors1F suit une loi de FisherF(2;1).

2. SiTsuit une loi de Student àdegrés de liberté alorsT2suit une loi de FisherF(1;).

1.2.5 Fonctions inverses et TableurLoiNotationVariableFct RépartitionV. critiqueFonction inverse

GaussN(0;1)Zloi.normale.standard(z)z

loi.normale.standard.inverse(1)Khi-Deux 2()K

2khideux(k;;1)

;1;2inverse.Loi.f(;1;2))

8CHAPITRE 1. LOIS STATISTIQUES

Chapitre2Convergences

2.1 Convergence en probabilité

2.1.1 Inégalités utiles

Inégalité de Markov simplifiée

SoitYune v.a.r.,gune fonction croissante et positive ou nulle sur l"ensemble des réels, vérifiantg(a)>0,

alors

8a >0;P(Ya)E(g(Y))g(a):

Preuve

E(g(Y)) =Z

g(y)f(y)dy=Z Y Yag(y)f(y)dy

Z

Yag(y)f(y)dycargest positive ou nulle

g(a)Z

Yaf(y)dycargest croissante

=g(a)P(Ya)

AinsiE(g(Y))g(a)P(Ya).

Rappel : Inégalité de Bienaymé-Chebyshev

SoitXune variable aléatoire admettant une espéranceE(X)et de variance finie2(l"hypothèse de variance finie garantit l"existence de l"espérance).

L"inégalité de Bienaymé-Chebychev s"énonce de la façon suivante : pour tout réel"strictement positif,

P(jXE(X)j ")2"

2: PreuveVoir Cours S3 ou prendreY=jXE(X)j,a="etg(t) =t2dans l"inégalité de Markov.

10CHAPITRE 2. CONVERGENCES2.1.2 Convergence en probabilité

Définition 4 (Convergence en probabilité)On considère une suite(Xn)d"une v.a. définie sur

Xune autre v.a. définie sur

On dit que la suite(Xn)converge en probabilité vers une constante réelle`si

8" >0;limn!1P(jXn`j> ") = 0:

On dit que la suite(Xn)converge en probabilité versXsi

8" >0;limn!1P(jXnXj> ") = 0:

Exemple de la loi binomiale :On réalisenexpériences indépendantes et on suppose que lors de

chacune de ces expériences, la probabilité d"un événement appelé "succès" estp. SoitSnle nombre de

succès obtenus lors de cesnexpériences. La variance aléatoireSn, somme denvariables de Bernoulli

indépendantes, de même paramètrep, suit une loi binomiale :Sn,! B(n;p). On s"intéresse alors à la variable aléatoire Snnquotesdbs_dbs35.pdfusesText_40
[PDF] statistique inférentielle cours et exercices corrigés pdf

[PDF] exercice corrigé echantillonnage estimation

[PDF] entrainement 800m natation

[PDF] oral natation bac

[PDF] temps moyen 800m nage libre

[PDF] 800m crawl bac

[PDF] filières énergétiques natation

[PDF] echauffement gym college

[PDF] séquence acrosport cycle 2

[PDF] échauffement acrosport en musique

[PDF] exercice d'échauffement musculaire

[PDF] brouette acrosport

[PDF] entrée dans l activité acrosport

[PDF] échauffement de danse classique

[PDF] échauffement danse hip hop