[PDF] [PDF] Les coniques - Lycée dAdultes





Previous PDF Next PDF



HYPERBOLE

parabole et hyperbole) par foyer et directrice et une étude plus approfondie de leurs propriétés voir le complément Coniques.



CONIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr l'hyperbole (du grec huperbolê : huper = au dessus ; ballein = lancer).



LES FONCTIONS DE RÉFÉRENCE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. LES FONCTIONS DE RÉFÉRENCE inverse est appelée une hyperbole. . ?2 ?1 025 1 2 3.



MANUELS DU SECONDAIRE 2013-2014

Hyperbole math. 978-2-09-172675-5. Mathématiques Term Es spécifique non spécialiste. Hyperbole Terminale ES spécifique /. L spécialité (2012).



FONCTION INVERSE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Remarque : La courbe d'équation = de la fonction inverse appelée hyperbole de centre.



Corrigés des exercices Objectif Bac

b) f(x) – (2x – 2) = (x – 1)[(2 – e–x. ) – 2] = – e–x. (x – 1) f(x) – (2x – 2) est du signe de 1 – x. est au-dessus de ? sur [0 ; 1] et au-dessous sur 



Hyperbole et orthocentre ? ? = et lon note

l'hyperbole (?) d'équation : = et l'on note l'orthocentre du triangle . ? Partie I. Utilisation de Geogebra. Construire la figure avec Geogebra



HYPERBOLES

On a ici deux asymptotes : une asymptote horizontale (axe des abscisses droite. ) et une asymptote verticale. (axe des ordonnes



Untitled

Maths. Série ES. (spécifique. +spécialité). Maths. Série S. (spécifique). Maths Hyperbole Terminale S - Spécialité ... Hyperbole math. 978-2-09-172672-4.



Hyperbole Terminale - Option Maths Complémentaires (2020)

Hyperbole Terminale - Option Maths Complémentaires. (2020). Liste des ressources. Module de calcul mental. - Exercices interactifs :.



[PDF] HYPERBOLE - Toutes les Maths

Pour une introduction unifiée des coniques (ellipse parabole et hyperbole) par foyer et directrice et une étude plus approfondie de leurs propriétés voir le 



[PDF] Lhyperbole

Une hyperbole est l'ensemble des points du plan dont la valeur absolue de la différence des distances à deux points fixes distincts F et F' est une 



HYPERBOLE PDF Asymptote Géométrie analytique - Scribd

i La courbe représentative de f est appelée Hyperbole i Les droites : x 0 et y 0 sont appelées Asymptotes à l'hyperbole H :



[PDF] Chapitre7 : Coniques - Melusine

I Ellipses hyperboles paraboles A) Ellipse C'est une courbe admettant dans un repère orthonormé (O?i?j) une équation du type x2 a2 + y2 b2 = 1



Mathématiques Lycée Collection Hyperbole - Site compagnon

Le site de la collection Hyperbole présente les manuels scolaires Nathan en Mathématiques pour le lycée (2de 1re Terminale) et propose aux enseignants 



Hyperbole Terminale - Spécialité - Livre de lélève - 9782091728919

Hyperbole pour donner le goût des maths ! Le livre du professeur offert en PDF aux enseignants prescripteurs : tous les exercices des manuels 



livres ebooks gratuits hyperbole au format pdf

LIVRE DE MATHS SECONDE HYPERBOLE 11-Livres Term ES vs PAS DE LIVRE Mathématiques Obligatoire Hyperbole mathématique Term ES Obligatoire NATHAN



manuel hyperbole mathematique Exercices Corriges PDF

hyperbole math matiques 1e s programme 2001 livre du - achetez hyperbole livre du professeur exercice corrige hyperbole 2de nathan examens corrig s pdf



hyperbole mathematique 2nd Exercices Corriges PDF

corrigA livre maths terminale s nathan hyperbole pdf hyperbole math terminale s pdf cherchez 1 5 · correction d exercice sos devoirs corriges 



[PDF] Les coniques - Lycée dAdultes

19 sept 2021 · Les grecs leur avaient donné comme nom : ellipse hyperbole parabole • La condition a + b = 0 signifie que les coefficients a et b ne 

  • Comment calculer le hyperbole ?

    (D), (D'), droites d'équation x = a2/c et x = – a2/c : directrices de l'hyperbole. K : pied de la directrice sur l'axe Ox. d = FK = b2/c . L'hyperbole est dite équilatère lorsque a = b, soit , c'est-à-dire lorsque les asymptotes sont perpendiculaires.
  • Quel est la fonction de l'hyperbole ?

    L'hyperbole du grec huper (au-dessus, au-delà) et ballein (lancer, jeter) consiste à exprimer une idée ou un sentiment de façon exagérée, qu'il s'agisse d'insister sur un point ou de produire une forte impression. Son emploi est extrêmement fréquent et elle prend de multiples formes.
  • Comment savoir si une courbe est une hyperbole ?

    En mathématiques, une hyperbole est une courbe plane obtenue comme la double intersection d'un double cône de révolution avec un plan. Elle peut également être définie comme conique d'excentricité supérieure à 1, ou comme ensemble des points dont la différence des distances à deux points fixes est constante.
  • Point milieu du segment joignant les foyers d'une hyperbole. Le centre d'une hyperbole est aussi le point de rencontre de ses axes de symétrie et de ses asymptotes.
DERNIÈRE IMPRESSION LE19 septembre 2021 à 15:32

Les coniques

Table des matières

1 Étude analytique2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Coniques dépourvues de centre. . . . . . . . . . . . . . . . . . . . . 2

1.3 Coniques à centre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Étude géométrique7

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Construction d"une conique. . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Excentricité et foyers. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Éléments caractéristiques. . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Parabole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Ellipse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.3 Hyperbole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Définition bifocale d"une ellipse et d"une hyperbole. . . . . . . . . 14

3 Équation paramétrique d"une conique15

3.1 Paramétrage d"une ellipse. . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Affinité orthogonale. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Construction de la tangente à une conique. . . . . . . . . . . . . . . 18

3.4 Équation d"une hyperbole rapportée à ses asymptotes. . . . . . . . 19

PAULMILAN1TERMINALE C PGRM1975

1 Étude analytique1.1 Définition

Définition 1 :On appelle conique les courbes du second degré c"est à dire les courbes dont les points M(x,y), dans un repère orthonormé, vérifient l"équation implicite suivante : ax

2+by2+2cx+2dy+e=0 avec|a|+|b| ?=0

Les coefficientsa,b,c,deteétant réels

Remarque :

leur avaient donné comme nom : ellipse, hyperbole, parabole. •La condition|a|+|b| ?=0 signifie que les coefficientsaetbne peuvent être nuls en même temps ce qui marque le second degré.

1.2 Coniques dépourvues de centre

Théorème 1 :Lorsque le produitab=0 avec|a|+|b| ?=0, on a si :

1)a=0 etc=0 suivant le signe deΔ?1=d2-be

•Δ?1>0deux droites horizontalesd"équationy=y1ety=y2 •Δ?1=0une droite horizontaled"équationy=y0

•Δ?1<0 aucun point

2)a=0 etc?=0une paraboled"axe parallèle à(Ox)du typeY2=2pX

3)b=0 etd=0 suivant le signe deΔ?2=c2-ae

•Δ?2>0deux droites verticalesd"équationx=x1etx=x2

•Δ?2=0une droite verticaled"équationx=x0

•Δ?1<0 aucun point

4)b=0 etd?=0une paraboled"axe parallèle à(Oy)du typeY=αX2

Démonstration :On détaillera les cas aveca=0. Les cas avecb=0 se démontrent pareillement.

1)a=0 etc=0, on obtient alors :by2+2dy+e=0. C"est une équation

réduite enyavecxquelconque. On calcule le discriminent réduit :Δ?1=d2-be •siΔ?1>0, l"équation admet deux solutions distinctes eny. On obtient alors deux droites horizontales d"équationy=y1ety=y2

PAULMILAN2TERMINALE C PRGM1975

1.2 CONIQUES DÉPOURVUES DE CENTRE

•siΔ?1=0, l"équation admet alors une solution double eny. On obtient alors une droite horizontale d"équationy=y0 •siΔ?1<0, l"équation n"admet pas de solution eny. Il n"y a donc aucun point vérifiant l"équation.

2)a=0 etc?=0 l"équation devient :

by

2+2cx+2dy+e=0?b?

y+d b? 2 -d2b2? =-2cx-e ?b? y+d b? 2 =-2cx+d2b-e?b? y+db? 2 =-2c? x+d2-be2bc? y+d b? 2 =-2cb? x+Δ?12bc?

On pose alors :p=-c

bet l"on fait le changement de repère suivant : ?X=x+Δ?1 2bc Y=y+d bde nouvelle origineΩ? -Δ?1

2bc;-db?

On obtient la courbe d"équationY2=2pXdans le repère(Ω,?ı,??)

Y=±?

2pX Exemple :Construire la parabole d"équation :y2-x-4y+2=0

On change la forme :

(y-2)2-4-x+2=0?(y-2)2=x+2

On fait le changement de repère suivant

?X=x+2

Y=y-2et on poseΩ(-2; 2)

OnobtientlaparaboleY2=X, décomposéeendeuxdemi-parabolesY=±⎷ X

1 2 3 4 5 6-1-20

-11 2345
O

Y=±⎷X

xXy Y

PAULMILAN3TERMINALE C PRGM1975

1.3 CONIQUES À CENTRE

1.3 Coniques à centre

Théorème 2 :Lorsque le produitab?=0, la conique possède un centre et son équation peut s"écrire sous la forme : aX

2+bY2=kde centreΩ?

-c a;-db?

1)ab>0 (par exemplea>0 etb>0)

•k=0 La conique se réduit àun seul pointΩ.

•k<0 La conique ne possèdeaucun point.

•k>0 La conique estune ellipsed"équation du typeX2α2+Y2β2=1

2)ab<0

•k=0 La conique est l"union dedeux droitesd"équationY=±X?-ab symétriques par rapport à(ΩX)et(ΩY) •k?=0 La conique estune hyperboled"équation du typeX2α2-Y2β2=±1 d"asymptotesY=±β αX Remarque :Toutes ses coniques possèdent deux axes de symétrie(ΩX)et(ΩY). Démonstration :On change la forme de l"équation : ax

2+by2+2cx+2dy+e=0?a?

x 2+2c a? +b? y

2+2db?

+e=0? a x+c a?

2+c2a2?

+b? y+db? 2 +d2b2? +e=0? a x+c a? 2+b? y+db? 2 =c2a+d2b-e

On pose alorsk=c2

a+d2b-eet l"on fait le changement de variable suivant : ?X=x+c a Y=y+d bde nouvelle origineΩ? -c a;-db?

On obtient alors l"équation :aX2+bY2=k

1)ab>0 (par exemplea>0 etb>0)

•Sik=0 la seule solution de l"équation estX=0 etY=0, donc la conique se réduit àΩ •Sik<0 l"équation n"a pas de solution donc la conique ne possède aucun point.

PAULMILAN4TERMINALE C PRGM1975

1.3 CONIQUES À CENTRE

•Sik>0, on divise park:akX2+bkY2=1?X2k

a+ Y2 k b=1

On pose alors commea>0,b>0 etk>0 :α2=k

aetβ=kb on obtient alors :X2

α2+Y2β2=1 équation d"une ellipse

Remarque :

α: longueur de demi-axe horizontal de l"ellipse

β: longueur de demi-axe vertical de l"ellipse

siα=βl"ellipse est alors un cercle de rayonα.

2)ab<0

•Sik=0 l"équation devientY2=-abX2?Y=±X?-ab. la conique est alors la réunion de deux droites.

•Sik?=0, on divise park:akX2+bkY2=1?X2k

a+ Y2 k b=1 Commeaetbsont de signes contraires deux cas sont envisageables : a) k a>0 etkb<0, on pose alors :α2=kaetβ2=-kb l"équation devient alors X2

α2-Y2β2=1

b) k a<0 etkb>0, on pose alors :α2=-kaetβ2=kb l"équation devient alors-X2

α2+Y2β2=1?X2α2-Y2β2=-1

On obtient alors dans ces deux cas l"équation d"une hyperbole.

Exemples :Construire les courbes suivantes :

a)x2+4y2-4x+8y-17=0 b) 4x2-9y2+8x+18y-41=0 a) On change la forme de l"équation : x

2+4y2-4x+8y-17=0?x2-4x+4(y2+2y)-17=0

On pose alorsα2=25 etβ2=25

4et l"on fait le changement de repère

suivant :?X=x-2

Y=y+1et on poseΩ(2;-1)

On obtient l"ellipse

X2

52+Y2?5

2? 2=1

PAULMILAN5TERMINALE C PRGM1975

1.3 CONIQUES À CENTRE

1 2 3 4 5 6 7-1-2-30

-1 -2 -3 -41 2O X2

52+Y2?5

2? 2=1 x Xy Y b) On change la forme de l"équation :

On pose alorsα2=36

4=9 etβ2=369=4 et l"on fait le changement de

repère suivant :?X=x+1

Y=y-1et on poseΩ(-1; 1)

On obtient l"hyperbole

X2

32-Y222=1 d"asymptotesY=±32X

1 2 3 4 5 6-1-2-3-4-5-6-7-80

-1 -2 -31

2345OΩ

X2

32-Y222=1

xXy Y Y=3 2X Y=-3 2X Remarque :Si on avait l"équationX232-Y222=-1 l"hyperbole se situerait dans les deux autres zones délimitées par les asymptotes comme indiquées en pointillé sur le figure ci-dessus.

PAULMILAN6TERMINALE C PRGM1975

2 Étude géométrique2.1 Définition

Définition 2 :Soit F un point fixe,Dune droite fixe eteun réel strictement positif (F /?D). Pour tout point M du plan, on note H le projeté orthogonal de M surD. Une conique defoyer Fest alors l"ensemble des points M vérifiantMF MH=e eest appelé l"excentricitéetDladirectricede la conique. La perpendiculaireΔàDpassant par le foyer F est appeléaxe focalde la conique.

Remarque :

ment lesconiques propresc"est à dire la parabole, l"ellipse et l"hyperbole. Quandetend vers 0, la conique se rapproche d"un cercle et quandetend vers+∞, la conique se rapproche de sa directrice. •Toutes les coniques ainsi définies sont symétriques par rapport à leur axe focal.

2.2 Construction d"une conique

On distinguera deux cas :e=1 ete?=1

a)e=1 donc MF=MH.

Méthode

On prend un point H sur la directrice

Dde la conique, M est alors l"inter-

section de la médiatrice de [FH] et de la droite perpendiculaire àDpassant par H. Si H est en K le point M est alors en S=m[KF].

En faisant varier H surD, on obtient

une parabole de sommet S

Sur la figure ci-contre, on a tracer

deux points M

1et M2de la parabole.

FH 1 ?M1H 2 ?M2 K SD b)e?=1 donc MF =eMH

Méthode

Onélèveaucarré: MF

2-e2MH2=0??--→MF-e--→MH?

·?--→MF+e--→MH?

=0 On introduit alors les barycentres I et J respectivement associés aux points pondérés (F ;1); (H ;e) et (F ;1); (H ;-e).

PAULMILAN7TERMINALE C PRGM1975

2.2 CONSTRUCTION D"UNE CONIQUE

On a alors(1-e)-→MI·(1+e)-→MJ=0 donc-→MI·-→MJ=0 Les vecteurs-→MI et-→MJ sont perpendiculaires donc M appartient au cercle de diamètre [IJ]. M est donc l"intersection de la droite perpendiculaire àDpassant par H et du cercle de diamètre [IJ]. On obtient donc deux points M : M

1et M2. Lorsque H

est en K, on obtient les sommets S

1et S2.

Pour déterminer les barycentres I et J, on posee=a b. Sur deux droites parallèles menées en F et H, on porte respectivement les lon- gueursaetb. La construction de I et J découle du théorème de Thalès : IF

IH=JFJH=ab

L"ensemble des points M est alors soit une ellipse sie<1 ou une hyperbole si e>1 (comme sur la figure ci-dessous). Le centre de l"ellipse ou de l"hyperbole estΩ=m[S1S2]. On observe un deuxième foyer F" symétrique de F par rapport àΩ. FKH? I J? M 1? M 2 S 1? S 2? F" ΔD a ab e=32>1 hyperbole Remarque :On remarque que l"ellipse comme l"hyperbole possède, en plus de l"axe focal, un autre axe de symétrie : la droite parallèle àDpassant parΩ.

PAULMILAN8TERMINALE C PRGM1975

2.3 EXCENTRICITÉ ET FOYERS

2.3 Excentricité et foyers

Théorème 3 :On appellepla distance de F à la directriceD. Suivant les valeurs de l"excentricitée, on obtient les coniques suivantes :

1) Sie=1 la conique est une parabole d"équationY2=2pXdans le repère

(S,?ı,??). S étant le sommet de la parabole.

2) Sie?=1 La conique possède un centreΩ, un deuxième foyer F", symétrique

de F par rapport àΩ. Son expression dans le repère(Ω,?ı,??)est de la forme : •sie<1X2a2+Y2b2=1. La conique est alors une ellipse. •sie>1X2a2-Y2b2=1. La conique est alors une hyperbole.

On aa2=e2p

(1-e2)2etb2=e2p|1-e2|

Démonstration :On se place dans

le repère centré en F pointant dans les directions de l"axe focalΔet de la direc- trice de la coniqueDcomme indiquée sur la figure ci-dessous.

On appellepla distance entre F et la di-

rectrice de la conique.

Le point M a comme coordonnées

(x;y)dans le repère(F,?ı,??). FH KM ΔD x y p M est sur la conique de foyer F, de directriceDet d"excentricitéesi, et seulement si : MF

MH=e?MF2=e2MH2?x2+y2=e2(x+p)2

x

1) Sie=1 l"équation devient :

y

2-2px-p2=0?y2=2px+p2?y2=2p?

x+p 2?

On pose S

-p 2; 0? et???X=x+p2 Y=y Dans le repère(S,?ı,??), l"équation devient :Y2=2pX On reconnaît une parabole d"axeΔet de sommet S.

PAULMILAN9TERMINALE C PRGM1975

2.4 ÉLÉMENTS CARACTÉRISTIQUES

2) Sie?=1 l"équation devient :

(1-e2)x2+y2-2e2px-e2p2=0 (1-e2)? x

2-2e2p

1-e2x?

+y2=e2p2 (1-e2)? x-e2p 1-e2? 2 -e4p21-e2+y2=e2p2 (1-e2)? x-e2p 1-e2? 2 +y2=e4p21-e2+e2p2 (1-e2)?quotesdbs_dbs13.pdfusesText_19
[PDF] parabole maths seconde

[PDF] parabole convexe

[PDF] parabole maths définition

[PDF] exercice losange 5eme

[PDF] exercice parallélogramme 5eme pdf corrigé

[PDF] loi de pareto exercices corrigés

[PDF] loi pareto exemple calcul

[PDF] exercice pareto maintenance

[PDF] diagramme de pareto cours pdf

[PDF] exemple pareto avec excel

[PDF] exercice corrigé pareto pdf

[PDF] diagramme de pareto-exemple d'application

[PDF] grandeur inversement proportionnelle definition

[PDF] partie entière et exercices corrigés

[PDF] résoudre équation partie entière pdf