[PDF] [PDF] POLYNÔME DU SECOND DEGRÉ CORRECTION DES EXERCICES





Previous PDF Next PDF



Seconde Devoir n° 17 maison mai Exercice 1 : Résoudre dans R

Corrigé. Exercice 1 : 1. Résolution d'équations et inéquations. (5x + 1)(x ? 3) + (x + 2)(x ? 3) = 0. (5x + 1) (x ? 3) +(x + 2) (x ? 3).



ÉQUATIONS INÉQUATIONS

Comme ? < 0 l'équation ne possède pas de solution réelle. Propriété : La somme S et le produit P des racines d'un polynôme du second degré de la forme.  



Exercices équations du premier degré et équations produit …

L'équation admet donc exactement deux solutions : ce sont 2. ? et 12. ? . Page 2. b). (. )( ) 2 1. 12 0 x x. ?. ?. = . Un produit de facteurs est nul si et 



Les inéquations du premier degré - Lycée dAdultes

6 sept. 2014 Pour quelles distances à parcourir est-il plus avantageux de s'adresser au second transporteur ? EXERCICE 11. Une société veut imprimer des ...



Équation produit nul Cycle 4 - Exercices Corrigés en vidéo avec le

Invente une équation qui admette -1 et 3 comme solution. Résoudre une équation `a l'aide d'une factorisation. Résoudre les équations suivantes : x2 = 2x. (3 



Correction contrôle de mathématiques

11 déc. 2014 Exercice 2. Inéquations produit et quotient. (6 points). Résoudre les inéquations suivantes dans R à l'aide d'un tableau de signes.



Généralités sur les fonctions:Exercices corrigés

Résoudre par le calcul l'équation f(x) = g(x). Page 3. Généralités sur les fonctions:Exercices corrigés. Seconde. Exercice 



82 exercices de mathématiques pour 2nde

4 oct. 2015 Corrigé de l'exercice 1. A = 1 + 1. 2 ... On pourrait écrire la seconde équation sous la forme : b = 6 a. ... Produit. ??. ?9. ?1. 2.



Exercices corrigés – Révisions – Thème : Second degré

3°) Résoudre l'équation 0)(. = xP. en vous aidant des questions précédentes. Exercice 8 : Etudier le signe du trinôme. 5. 6² +. ? x x.



EQUATIONS INEQUATIONS

Exercices conseillés En devoir. Exercices conseillés En devoir. -p140 n°2 à 4 Méthode : Résoudre une équation en se ramenant à une équation-produit.



leay:block;margin-top:24px;margin-bottom:2px; class=tit unemainlavelautrenetInéquation produit-nul

Inéquation produit-nul Exercice 18 ABCDest un carré de côté x exprimé en cm avec x 6 Eest le point du segment AB? tel que EB 6 cm 1 Exprimez en fonction de x l'aire en cm2 du triangle AED 2 Peut-on trouver xpour que l'aire du carré ABCD soit strictement supérieure au triple de l'aire du tri-angle AED? A B D C E '' '' x Exercice 19



Comment resoudre les inequations dans r? – ConseilsRapides

Exercices : inéquation produit www bossetesmaths com Exercice 1 (Comme dans la vidéo) Résoudre les inéquations-produit ci-dessous : 1)(2x?5)(3x+6)>0; 2)(4?3x)(6x?2)É0; 3)?2(5+x)(4x?2)Ê0; 4)(?2x?1)(5?2x)



Exercices CORRIGES - Site de maths du lycee La Merci (Montpellier

Exercices CORRIGES - Site de maths du lycee La Merci (Montpellier) en Seconde ! · Chap 03 - Ex 1 - Relation d'ordre - CORRIGE · Chap 03 - 1A - Inéquations - 



[PDF] ÉQUATIONS INÉQUATIONS - maths et tiques

Comme ? < 0 l'équation ne possède pas de solution réelle Propriété : La somme S et le produit P des racines d'un polynôme du second degré de la forme  



2nd - Exercices - Inéquations et tableaux de signes -

Inéquations – Tableaux de signes 2nd – Exercices corrigés Exercice 1 Dans chacun des cas fournir les tableaux de signes correspondants



Équations et inéquations : exercices de maths en 2de corrigés

Des exercices sur les équations inéquations et résolution graphique : exercices de maths en seconde pour progresser en maths au lycée et à imprimer en PDF 



[PDF] Les inéquations du premier degré - Lycée dAdultes

6 sept 2014 · EXERCICE 4 Résoudre les inéquations suivantes en donnant la solution sous la forme d'un Inéquations produits EXERCICE 6



[PDF] Correction contrôle de mathématiques - Lycée dAdultes

11 déc 2014 · Exercice 2 Inéquations produit et quotient (6 points) Résoudre les inéquations suivantes dans R à l'aide d'un tableau de signes



[PDF] Inéquations : exercices

Exercice 1 : Résoudre dans R les inéquations suivantes : 1) x?2 ? 0 2) x+4 > 0 3) 2x+7 > 0 Seconde - Inéquations c©P Brachet - www xm1math net



[PDF] Équations et inéquations – Exercices

Équations et inéquations – Exercices – Seconde – G AURIOL Lycée Paul Sabatier Équations et inéquations – Exercices Résolution graphique d'(in)équations



[PDF] POLYNÔME DU SECOND DEGRÉ CORRECTION DES EXERCICES

INÉQUATIONS DU SECOND DEGRÉ: Exercice 1 : Résolvons dans R les inéquations suivantes sans utiliser le discriminant 1 (2x + 1)( 



[PDF] Equations et inéquations et systèmes partie1 - AlloSchool

Cours avec Exercices d'application PROF : ATMANI NAJIB Tronc CS Avec solutions http://xriadiat e-monsite com IV) équation du second degré a une inconnue

Comment résoudre une inéquation produit du premier degré ?

    Méthode : Pour résoudre une inéquation produit du premier degré, on doit : 1) Etudier les signes du premier puis du second facteur dans un tableau de signes. 2) Utiliser la règle de signes pour obtenir le signe du produit et trouver l’ensemble des solutions de l’inéquation en faisant attention au sens de l’inégalité.

Quels sont les exercices corrigés sur les inéquations ?

    : 3eme Secondaire – Exercices corrigés sur les inéquations Exercice 1 : Résolution des inéquations. Exercice 2 : Cocher les cases lorsque le nombre est solution de l’inéquation. Exercice 3 : Exercice de type Brevet. Exercice 4 : Résolution des inéquations.

Comment résoudre une inéquation produit ou quotient ?

    Pour résoudre une inéquation produit ou quotient, on étudie le signe du produit ou du quotient en dressant un tableau de signes. On passe tous les termes du même côté de l'inégalité pour se ramener à une inéquation du type A imes B gt 0, A imes B lt 0, dfrac {A} {B} gt 0 ou dfrac {A} {B} lt 0.

Quels sont les solutions de l’inéquation?

    Les solutions de l’inéquation f (x) ? g (x) sont l’intervalle (ou l’union de celle-ci) fermé (ou semi-fermé pour les infinis) formé par les abscisses des points de Cf situés au dessus ou sur Cg . Les solutions de l’inéquation f (x) ? g (x) sont donc :

Chapitre 1 : Polynôme du second degré

POLYNÔME DU SECOND DEGRÉ

CORRECTION DES EXERCICES

INÉQUATIONS DU SECOND DEGRÉ:Exercice1:

Résolvons dansRles inéquations suivantes sans utiliser le discriminant.1.(2x+ 1)(x3)>0

Posons(2x+ 1)(x3) = 0

(2x+ 1)(x3) = 0,2x+ 1 = 0oux3 = 0 ,x=12 oux= 3

Faisons un tableau de signe:x

2x+ 1x3(2x+ 1)(x3)1

123+10++

0+ +00+

Ainsi, pour toutx2

1;12 []3;+1[on a(2x+ 1)(x3)>0. Par conséquent, l"ensemble solution de l"inéquation est l"intervalle: 1;12 []3;+1[c Cours GaliléeToute reproduction, même partielle, est strictement interdite.1

Chapitre 1 : Polynôme du second degré

2.4x2 +x2

4x2 +x2, x2+ 4x20,x24x+ 20

Posonsx24x+ 2 = 0

x

24x+ 2 = 0,(x2)24 + 2 = 0

,(x2)22 = 0 ,(x2)2= 2 ,x2 =p2oux2 =p2 ,x= 2 +p2oux= 2p2

Faisons un tableau de signe.x

x

24x+ 212p22 +

p2+1+00+

Ainsi,x24x+ 20pour toutx22p2;2 +p2

Par conséquent, l"ensemble solution de l"inéquation est l"intervalle:

2p2;2 +p2

3.16(x4)20

Posons16(x4)2= 0

16(x4)2= 0,42(x4)2= 0

,(4x+ 4)(4 +x4) = 0 ,x(8x) = 0 ,x= 0oux= 8

Faisons un tableau de signe:c

Cours GaliléeToute reproduction, même partielle, est strictement interdite.2

Chapitre 1 : Polynôme du second degré

x

16(x4)2108+10+0

Ainsi,16(x4)20pour toutx2]1;0][[8;+1[

Par conséquent, l"ensemble solution de l"inéquation est l"intervalle: ]1;0][[8;+1[4.p5(2x1)20

On sait que pour toutx2R,(2x1)20

Ce qui équivaut àp5(2x1)20carp5<0

Par conséquentRest l"ensemble solution de l"inéquation.5.2x2<5x

2x2<5x, 2x25x <0

Posons2x25x= 0

2x25x= 0, x(x+ 5) = 0

,x= 0oux+ 5 = 0 ,x= 0oux=5

Faisons un tableau de signe:x

2x25x150+10+0

Ainsi,2x25x <0pour toutx2]1;5[[]0;+1[

Par conséquent, l"ensemble solution de l"inéquation est l"intervalle: ]1;5[[]0;+1[c Cours GaliléeToute reproduction, même partielle, est strictement interdite.3

Chapitre 1 : Polynôme du second degré

6.2x2p2x >0

Posons2x2p2x= 0

2x2p2x= 0,x(2xp2) = 0

,x= 0ou2xp2 = 0 ,x= 0oux=p2 2

Faisons un tableau de signe:x

2x2p2x10p2

2+1+00+

Exercice2:

On considère les fonctionsfetgdéfinies surRpar : f(x) = 2x2(3 +p2)x+ 6p2etg(x) =x2+ 3x2:1.Déterminons les racines des fonctionsfetgdansR. f(x) = 2x2(3 +p2)x+ 6p2 Soit1le discriminant de l"équation2x2(3 +p2)x+ 6p2 = 0

1=b24ac

= [(3 +p2)]

24(2)(6p2)

= 9 + 6p2 + 248p2 = 1142p2

On sait que11<42p2donc1142p2<0ainsi1<0

1<0donc l"équation n"admet pas de solutions réelles.

Par conséquent, la fonctionfn"admet pas de racines réelles.c Cours GaliléeToute reproduction, même partielle, est strictement interdite.4

Chapitre 1 : Polynôme du second degré

g(x) =x2+ 3x2

Soit2le discriminant de l"équationx2+ 3x2 = 0

2=b24ac

= 3

24(1)(2)

= 98 = 1

2>0donc l"équation admet deux solutions réelles distinctes:

x 1=bp

22a=312= 2etx2=b+p

22a=3 + 12= 1

Par conséquent, la fonctiongadmet deux racines distinctes:1et22.Donnons le tableau de signes des fonctionsfetg.

Tableau de signe defx

f(x)1+1+

Tableau de signe degx

g(x)112+10+0

3.Déduisons l"ensemble solutions des inéquationsf(x)<0etg(x)0

dansR.

Solution de l"inéquationsf(x)<0

A partir du tableau de signe defprécédent on a:c Cours GaliléeToute reproduction, même partielle, est strictement interdite.5

Chapitre 1 : Polynôme du second degré

f(x)>0pour toutx2Rainsi l"inéquationf(x)<0n"admet aucune solution réelle. Par conséquent, l"ensemble solution de l"inéquationf(x)<0est vide.

Solution de l"inéquationsg(x)0

A partir du tableau de signe degprécédent on a: g(x)0pour toutx2]1;1][[2;+1[ D"où l"ensemble solutions de l"inéquationg(x)0est l"intervalle ]1;1][[2;+1[

Exercice3:

On considère les fonctionsuetvdéfinies surRpar :

u(x) = 3x2+ 7x+ 5etv(x) =x22x+ 71.Déterminons si elles existent, les racines des fonctionsuetvdansR.

u(x) = 3x2+ 7x+ 5 Soit1le discriminant de l"équation3x2+ 7x+ 5 = 0

1=b24ac

= 7

24(3)(5)

= 4960 =11

1<0donc l"équation n"admet pas de solutions réelles.

Par conséquent, la fonctionun"admet pas de racines réelles. v(x) =x22x+ 7

Soit2le discriminant de l"équationx22x+ 7 = 0

2=b24ac

= (2)24(1)(7) = 4 + 28 = 32 = (4p2) 2c Cours GaliléeToute reproduction, même partielle, est strictement interdite.6

Chapitre 1 : Polynôme du second degré

2>0donc l"équation admet deux solutions réelles distinctes:

x 1=bp

22a=24p2

2=1 + 2p2et

x 2=b+p

22a=2 + 4p2

2=12p2

Par conséquent, la fonctionvadmet deux racines distinctes:12p2 et1 + 2p2

2.Donnons le tableau de signes des fonctionsuetv.

Tableau de signe deux

u(x)1+1+

Tableau de signe devx

v(x)112p21 + 2p2+10+0

3.Déduisons l"ensemble solutions des inéquationsu(x)0etv(x)<0

dansR.

Solution de l"inéquationsu(x)0

A partir du tableau de signe deuprécédent on a: u(x)>0pour toutx2R. Par conséquent, l"ensemble solution de l"inéquationu(x)0est l"ensembleR.c Cours GaliléeToute reproduction, même partielle, est strictement interdite.7

Chapitre 1 : Polynôme du second degré

Solution de l"inéquationsv(x)<0

A partir du tableau de signe devprécédent on a: v(x)<0pour toutx21;12p2 [1 + 2p2;+1 D"où l"ensemble solutions de l"inéquationv(x)<0est l"intervalle:1;12p2 [1 + 2p2;+1

Exercice4:

Résolvons dansRles inéquations ci-dessous.1.2x2+x <3x242

2x2+x <3x242,3x2422x2x >0,x2x42>0

Posonsx2x42 = 0

Soitle discriminant de cette équation :

= (1)24(1)(42) = 1 + 168 = 169 = 132 >0donc l"équation admet deux solutions réelles distinctes: x

1=1132

=6etx2=1 + 132 = 7

Faisons un tableau de signe:x

x

2x42167+1+00+

Ainsi,x2x42>0pour toutx2]1;6[[]7;+1[

D"où l"ensemble solution de l"inéquation2x2+x <3x242est: ]1;6[[]7;+1[2.3x2x23x+ 4

3x2x23x+ 4,2x23x+ 43x0,2x26x+ 40,

x

23x+ 20

Posonsx23x+ 2 = 0

Soitle discriminant de cette équation :c

Cours GaliléeToute reproduction, même partielle, est strictement interdite.8

Chapitre 1 : Polynôme du second degré

= (3)24(1)(2) = 98 = 1 >0donc l"équation admet deux solutions réelles distinctes: x 1=312 = 1etx2=3 + 12 = 2

Faisons un tableau de signe:x

x

23x+2112+1+00+

Ainsix23x+ 20pour toutx2[1;2]

D"où l"ensemble solution de l"inéquation3x2x23x+ 4est[1;2]

Exercice5:

Résolvons dansRles inéquations ci-dessous en précisant les valeurs interdites le cas échéant.1.(x3)(x25x+ 6)>0

Posons(x3)(x25x+ 6) = 0

(x3)(x25x+ 6) = 0,x3 = 0oux25x+ 6 = 0 Résolvons les équations :x3 = 0etx25x+ 6 = 0 x3 = 0,x= 3

Soitle discriminant de l"équationx25x+ 6 = 0

= (5)24(1)(6) = 2524 = 1 >0donc l"équation admet deux solutions réelles distinctes: x 1=512 = 2etx2=5 + 12 = 3

Faisons un tableau de signe:c

Cours GaliléeToute reproduction, même partielle, est strictement interdite.9

Chapitre 1 : Polynôme du second degré

x x3x

25x+ 6(x3)(x25x+6)123+10+

+00+ 0+0+

Ainsi(x3)(x25x+ 6)>0pour toutx2]2;3[[]3;+1[

D"où l"ensemble solution de l"inéquation(x3)(x25x+ 6)>0est: ]2;3[[]3;+1[2.(x21)(x27x+ 6)0

Posons(x21)(x27x+ 6) = 0

(x21)(x27x+ 6) = 0,x21 = 0oux27x+ 6 = 0 Résolvons les équations:x21 = 0etx27x+ 6 = 0 x

21 = 0,x= 1oux=1

Soitle discriminant de l"équationx27x+ 6 = 0

= (7)24(1)(6) = 4924 = 25 = 52 >0donc l"équation admet deux solutions réelles distinctes : x 1=752 = 1etx2=7 + 52 = 6

Faisons un tableau de signe:x

x 21x

27x+ 6(x21)(x27x+6)1116+1+00++

++00+ +000+ c Cours GaliléeToute reproduction, même partielle, est strictement interdite.10

Chapitre 1 : Polynôme du second degré

Ainsi pour toutx2[1;6];(x21)(x27x+ 6)0

D"où l"ensemble solution de l"inéquation(x21)(x27x+ 6)0est [1;6].

Exercice6:

Résolvons dansRles inéquations ci-dessous en précisant les valeurs interdites le cas échéant.1.

2x12x5

2x12x5,2x1(2x5)0

2(2x5)(x1)x10

2(2x22x5x+ 5)x10

2x2+ 7x3x10

Étudions le signe des fonctionx1et2x2+ 7x3

Posonsx1 = 0

x1 = 0,x= 1

Posons2x2+ 7x3 = 0

Soitle discriminant de cette équation.

= 7

24(2)(3) = 4924 = 25 = 52

>0donc l"équation admet deux solutions réelles distinctes: x

1=754= 3etx2=7 + 54=12

Faisons un tableau de signe :c

Cours GaliléeToute reproduction, même partielle, est strictement interdite.11

Chapitre 1 : Polynôme du second degré

x x12x2+ 7x32x2+ 7x3x111

213+10++

0++0 +0+0

Ainsi,

2x2+ 7x3x10pour toutx212

;1 [[3;+1[

D"où l"ensemble solution de l"inéquation

2x12x5est :12

;1 [[3;+1[ La valeur interdite de cette inéquation est le réel :12.

2x23x5x

22x+ 1>1

2x23x5x

22x+ 1>1,2x23x5x

22x+ 11>0

2x23x5(x22x+ 1)x

22x+ 1>0

2x23x5x2+ 2x1x

22x+ 1>0

x2x6x

22x+ 1>0

Étudions le signe des fonctionsx2x6etx22x+ 1

Posonsx2x6 = 0

Soit1le discriminant de cette équation

1= (1)24(1)(6) = 1 + 24 = 25 = 52

1>0donc l"équation admet deux solutions réelles distinctes:c

Cours GaliléeToute reproduction, même partielle, est strictement interdite.12

Chapitre 1 : Polynôme du second degré

x 1=152 =2etx2=1 + 52 = 3

Posonsx22x+ 1 = 0

Soit2le discriminant de cette équation

2= (2)24(1)(1) = 44 = 0

1= 0donc l"équation admet une unique solution réelle:

x 0=22 = 1

Faisons un tableau de signe:x

x 2x6x

22x+ 1x

2x6x

22x+ 11213+1+00+

++0++ +00+

Ainsi,

x2x6x

22x+ 1>0pour toutx2]1;2[[]3;+1[

D"où l"ensemble solution de l"inéquation

2x23x5x

22x+ 1>1est :

]1;2[[]3;+1[ La valeur interdite de cette inéquation est le réel :1

Exercice7:

Résolvons dansRles inéquations ci-dessous en précisant les valeurs interdites le cas échéant.1.

32x1x2(x1)0c

Cours GaliléeToute reproduction, même partielle, est strictement interdite.13

Chapitre 1 : Polynôme du second degré

3

2x1x2(x1)0,6(x1)x(2x1)2(2x1)(x1)0

6x62x2+x2(2x1)(x1)0

2x2+ 7x62(2x1)(x1)0

Étudions le signe des fonctions2x2+ 7x6et2(2x1)(x1)

Posons2x2+ 7x6 = 0

Soitle discriminant de cette équation

= (7)

24(2)(6) = 4948 = 1

>0donc l"équation admet deux solutions réelles distinctes: x

1=714= 2etx2=7 + 14=32

Posons2(2x1)(x1) = 0

2(2x1)(x1) = 0,2x1 = 0oux1 = 0,x=12

oux= 1

Faisons un tableau de signe:x

2x2+ 7x62(2x1)(x1)2x2+ 7x62(2x1)(x1)11

213

22+10+0

+00+++ +0+0

Ainsi,

2x2+ 7x62(2x1)(x1)0pour toutx2

1;12 1;32 [[2;+1[c Cours GaliléeToute reproduction, même partielle, est strictement interdite.14

Chapitre 1 : Polynôme du second degré

D"où l"ensemble solution de l"inéquation

32x1x2(x1)0est :

1;12 1;32 [[2;+1[ Les valeurs interdites de cette inéquations sont : 12 et12.

2x10x2+x+ 2>1

2x10x2+x+ 2>1,2x10x2+x+ 21>0

2x10(x2+x+ 2)x2+x+ 2>0

2x10 +x2x2x2+x+ 2>0

x2+x12x2+x+ 2>0

Étudions le signe des fonctionsx2+x12etx2+x+ 2

Posonsx2+x12 = 0

Soit1le discriminant de cette équation

1= 124(1)(12) = 1 + 48 = 49 = 72

1>0donc l"équation admet deux solutions réelles distinctes:

x 1=172 =4etx2=1 + 72 = 3

Posonsx2+x+ 2 = 0

Soit2le discriminant de cette équation

2= 124(1)(2) = 1 + 8 = 9 = 32

2>0donc l"équation admet deux solutions réelles distinctes:

x

1=132= 2etx2=1 + 32

= 1

Faisons un tableau de signe:c

Cours GaliléeToute reproduction, même partielle, est strictement interdite.15

Chapitre 1 : Polynôme du second degré

x x

2+x12x2+x+ 2x

2+x12x2+x+ 214123+1+00+

0+0 0++0

Ainsi,

x2+x12x2+x+ 2>0pour toutx2]4;1[[]2;3[

D"où l"ensemble solution de l"inéquation

2x10x2+x+ 2>1est :

]4;1[[]2;3[ Les valeurs interdites de cette inéquation sont:1et2c Cours GaliléeToute reproduction, même partielle, est strictement interdite.16quotesdbs_dbs14.pdfusesText_20
[PDF] inéquation quotient seconde exercices corrigés

[PDF] inequitable exposure to air pollution from vehicles in california

[PDF] inequities definition and examples

[PDF] inequities definition in chinese

[PDF] inequities definition in english

[PDF] inequity examples

[PDF] inequity vs inequality

[PDF] inf8111

[PDF] inf8775

[PDF] infant bls aha

[PDF] infeasible solution

[PDF] infeasible solution in lpp

[PDF] infeasible solution in operation research

[PDF] infection prevention and control best practices for small animal veterinary clinics

[PDF] infection urinaire