[PDF] [PDF] 2007-2008 Corrigé du devoir danalyse de mars 2008 Exercice 1

Montrer que la fonction f(x) = x2 n'est pas uniformément continue sur [0, +∞[ Corrigé 1 On écrit la négation de l'uniforme continuité ∃ε0 > 0 tq ∀α > 0, ∃x 



Previous PDF Next PDF





[PDF] 2007-2008 Corrigé du devoir danalyse de mars 2008 Exercice 1

Montrer que la fonction f(x) = x2 n'est pas uniformément continue sur [0, +∞[ Corrigé 1 On écrit la négation de l'uniforme continuité ∃ε0 > 0 tq ∀α > 0, ∃x 



[PDF] Planche no 21 Continuité : corrigé - Maths-francefr

Ainsi, f est donc 1-Lipschitzienne et en particulier continue sur R Exercice no 2 Pour x ∈ [a, b], posons g(x) = f(x) − x La 



[PDF] Suites de fonctions - Licence de mathématiques Lyon 1

Allez à : Correction exercice 1 Exercice 2 Autre outil pour la convergence uniforme Etudier la convergence uniforme de la suite de fonctions définies sur ℝ +



[PDF] 5 Exercices du Chapitre 5

Annexe A Corrigés des exercices Soit j : (S(2)\{p},d3) → (S(2) Par équicontinuité uniforme de la famille {fn} sur K et continuité uniforme de f sur K x − xi < δ



[PDF] Corrigé 8 du mercredi 9 novembre 2011 - Cours, examens et

Corrigé 8 du mercredi 9 novembre 2011 Exercice 1 Déterminer En prenant ε = 1, par continuité uniforme, il existe δ > 0 tel que f(x) − f(y) ≤ 1 si x − y ≤ δ,



[PDF] Continuité Applications continues

Continuité Applications continues Exercice 1 Soit X un espace topologique et f Exercice 14 Soit l∞ l'espace des suites réelles muni avec la norme uniforme, 



[PDF] TD de topologie et calcul différentiel– Corrigé de la Feuille 4

Exercice 4 (Distances usuelles sur C0([0, 1], R) ) Soit E l'espace des n'est pas compact, la distance de la convergence uniforme n'est qu'une semi- norme



[PDF] Exercices corrigés dAnalyse 2 de SMP - FPO

= e−1 = 0, d'où la non convergence uniforme de fn vers f ≡ 0 Exercice 2 Soit la suite de fonctions définie par I = R +; fn(x) = nαxe− 



[PDF] Fiche dexercices Th`eme : Continuité uniforme - LLG

Fiche d'exercices MPSI 3 - 2004/2005 Th`eme : Continuité uniforme Chapitre : 6 1 ∗Lipschitzienne vs uniformément continue Soit I un intervalle de R On 

[PDF] une fonction convexe admet toujours un minimum global

[PDF] fonctions convexes cours

[PDF] une fonction convexe n'a qu'un nombre fini de minima

[PDF] dérivabilité d'une fonction exercices corrigés

[PDF] montrer que f est dérivable sur r

[PDF] montrer qu'une fonction n'est pas dérivable en un point

[PDF] fonction continue sur un compact atteint ses bornes

[PDF] majoré minoré suite

[PDF] matrice diagonalisable exercice corrigé

[PDF] exemple dossier de synthèse bac pro sen tr

[PDF] rapport de stage terminal bac pro eleec pdf

[PDF] rapport de synthèse bac pro sen

[PDF] rapport de synthèse bac pro sen avm

[PDF] endomorphisme nilpotent exercice corrigé

[PDF] endomorphisme nilpotent problème

Universit´e de Marseille L1-S2- 2007-2008

Corrig´e du devoir d"analyse de mars 2008

Exercice 1

Uniforme continuit´e

1. Montrer que la fonction d´efinie parf(x) = 1/xn"est pas uniform´ement

continue sur ]0,1].

2. Soit-∞< a < b <+∞, montrer que la fonctionf(x) =x2est uni-

form´ement continue sur [a,b].

3. Montrer que la fonctionf(x) =x2n"est pas uniform´ement continue sur

[0,+∞[.

Corrig´e

1. On ´ecrit la n´egation de l"uniforme continuit´e

On voit que le probl`eme se pose au voisinage du point 0 car mˆeme si l"´ecart entrexetyest tr`es petit, l"´ecart entref(x) etf(y) peut ˆetre tr`es grand.

Plus pr´ecis´ement

?ε0=12 tq?α >0,?n?N?tel que1n < αetx=1n ,y=12n

2. Ce sera une cons´equence de l"exercice 3, mais on peut le d´emontrer di-

rectement. Soitx,y?[a,b].Un calcul direct conduit `a : Ainsi (La fonction estf(x) =x2est mˆeme Lipschitzienne sur [a,b] et donc uniform´ement continue sur [a,b]).

3. L`a le probl`eme se pose `a l"infini. On va raisonner comme dans le cas 1.

?ε0= 1 tq?α >0,?n?N?tel que1n < αetx=n ,y=n+12n 1

Exercice 2

Prolongement par densit´e

Soientfetgdeux fonctions d´efinies etcontinuessurR.Montrer que (x?Q?f(x) =g(x))?f=g.

Corrig´e

On va utiliser queQest dense dansR(voir d´emonstration plus loin) et quef etgsont continues surR. Soitx?Ril existe une suite (xn)?Qtelle quexn→x.Par continuit´e de fetgon a limn→+∞f(xn) =f(x) et limn→+∞g(xn) =g(x). Mais comme pour toutn?N,xn?Qet quefetgco¨ıncident surQ, on a f(xn) =g(xn),?n?N. Donc limn→+∞f(xn) = limn→+∞g(xn).

Densit´e deQdansR.

Soitx?R. Par d´efinition de la partie enti`ere,E[.], pour toutn?N, on a :

Posons:

x n=E[(n+ 1)x]n+ 1.

On axn?Qet

x n→n+∞x. Exercice 3Soitα >0,β >0.Soitfune fonction continue de [0,α[ dansR telle quef(0)<0 et limx→x<ααf(x) = +∞. Soitgune fonction continue deRdansRtelle queg(0)<0 etg(β)>0. Montrer qu"il existex?]0,min{α,β}[ tel quef(x)(x-β)-g(x) = 0.[On pourra distinguer les casβ < α,β > αetβ=α.]

Corrig´e

Voir corrig´e du partiel de 2006-2007.

Exercice 4

Soita < b?R.Toute fonction continue sur un[a,b]est uniform´ement continue.

Soitf: [a,b]→R.

On va raisonner par l"absurde.

2

1)-Ecrire la n´egation de cette d´efinition.

2)-Montrer que sifn"est pas uniform´ement continue sur [a,b], il existeε0>0

et (xn),(yn)?[a,b] tels que|xn-yn|<1n+1et|f(xn)-f(yn)| ≥ε0.

3)-Montrer qu"il existeφstrictement croissante deN→Netα?[a,b] tels

4)-En d´eduire que sifn"est pas uniform´ement continue sur [a,b],il existe

α?[a,b] tel quefn"est pas continue enα.

Corrig´e

1)- ?ε0>0,?δ >0,?(xδ,yδ)?[a,b]2t.q|xδ-yδ|< δet|f(xδ)-f(yδ)| ≥ε0.

2)-Il suffit de choisir pour toutn?N,δ=1n+1.

?ε0>0,?n?N,?(xn,yn)?[a,b]2t.q|xn-yn|<1n+ 1et??f(xn)-f(yn)??≥ε0.

3)-Comme [a,b] est un intervalle ferm´e born´e, par le th´eor`eme de Bolzano-

Weierstrass,on peut extraire de (xn) une suite convergente. Ainsi il existex? [a,b] etφ?:N→Ntels quexφ(n)→x. La suite (yφ(n)) est une suite extraite de la suit (yn), elle est dans [a,b] donc, toujours par le th´eor`eme de Bolzano-Weierstrass on peut en extraire une sous suite convergente. Ainsi il existey?[a,b] etψ?:N→Ntels queyψ(n)→y. La suite (xψ(n)) est extraite de la suite (xφ(n)) qui estconvergente versx, donc elle converge aussi versx.On a doncxψ(n)→xetyψ(n)→y.Mais on a aussi pour toutn |xn-yn|<1n+1et donc??xψ(n)-yψ(n)??<1ψ(n)+1et en passant `a la limite sur non obtient:|x-y|= 0,et doncx=y. On appelleαcette valeur commune.

4)-On a donc trouv´eα?[a,b] et deux suites de [a,b] convergentes versαet

telles que??f(xψ(n))-f(yψ(n)))??≥ε0.Sif´etait continue enαles suites images (f(xψ(n)) et (f(yψ(n)) seraient convergentes versf(α) et on aurait |f(α)-f(α)| ≥ε0>0 ce qui est impossible. 3quotesdbs_dbs35.pdfusesText_40