[PDF] [PDF] Math2 – Chapitre 3 Intégrales multiples

Intégrales multiples 3 1 – Intégrales de Riemann (rappels de TMB) 3 2 – Intégrales doubles 3 3 – Intégrales triples 3 4 – Aire, volume, moyenne et centre de 



Previous PDF Next PDF





[PDF] Chapitre 3 Intégrale double

Définition 3 2 (fonction en escalier sur un rectangle fermé) Soit R = [a, b] × [c, d] ( a



[PDF] Chapitre 26 :M éthodes de calcul des intégrales doubles

Chapitre 26 : Méthodes de calcul des intégrales doubles Fonctions de plusieurs variables Page 1 sur 3 Convention : on identifie le plan euclidien rapporté à 



[PDF] Exercices sur les intégrales doubles

2012/2013 Semestre de printemps Université Lyon I Calcul différentiel et intégral Exercices sur les intégrales doubles Exercice 1 Calculer ∫ 1 0 (∫ 1 0



[PDF] Math2 – Chapitre 3 Intégrales multiples

Intégrales multiples 3 1 – Intégrales de Riemann (rappels de TMB) 3 2 – Intégrales doubles 3 3 – Intégrales triples 3 4 – Aire, volume, moyenne et centre de 



[PDF] Sommaire Figures 1 Intégrales doubles - Christophe Caignaert - Free

Intégrales doubles et triples de ∆, on appelle intégrale double de f sur ∆ : I = † ∆ En un mot, on transforme cette intégrale double en 2 intégrales simples 



[PDF] la fin (intégrales de fonctions de plusieurs variables)

le long d'une courbe fermée C peuvent s'exprimer comme des intégrales doubles sur la région du plan entourée par C (c'est la formule de Green-Riemann)



[PDF] Chapitre 1 Intégrales doubles et probabilités

1 1 Qu'est ce qu'une intégrale double ? Soit une fonction réelle f à deux variables x et y Le graphe de f est une surface qui représente les valeurs f 



[PDF] INTÉGRALES DOUBLES

Intégrales doubles à variables séparables Rappels de cours Une intégrale double de la forme ∫∫ [a ;b]×[c ;d] f(x)g(y)dx dy peut se calculer en séparant les



[PDF] Intégrales doubles et triples - M—

Définition: Intégrale Double • D un domaine inscrit dans le rectangle [a,b] × [c,d] (borné, connexe de IR2), • f une fonction définie continue sur D (prolongée par 



[PDF] TD n 4 : Intégrales doubles

Pour chacune des intégrales suivantes, représenter graphiquement le domaine d 'intégration puis calculer l'intégrale en utilisant un changement de variables en 

[PDF] Assistance ? domiciliation bancaire - Crédit Agricole du Nord Est

[PDF] La liste ci-dessous vous aidera ? ne pas oublier un - Neuflize OBC

[PDF] vous souhaitez céder votre contrat fixe - Boutique orangefr

[PDF] vous souhaitez céder votre contrat internet - Boutique orangefr

[PDF] vous souhaitez céder votre abonnement Orange Mobile - Boutique

[PDF] Transformer les images

[PDF] Désactivation des coussins gonflables - SAAQ

[PDF] fiche technique 1 - Académie de Clermont-Ferrand

[PDF] PROCÉDÉ A SUIVRE POUR UNE MUTATION - USSB Handball

[PDF] Changement de filière en deuxième année (S3) - Faculté des

[PDF] formulaire admission TERMINALE GT PRO R2017

[PDF] Conseils pratiques SAV janvier 2017 - La Poste Mobile

[PDF] Questions-réponses sur le changement de série - Cité scolaire d 'Apt

[PDF] Changer de vie : le guide COMPLET - Penser et Agir : Le

[PDF] Changez de vie en 7 jours (livre + CD)

Math2 { Chapitre 3

Integrales multiples

3.1 {

Int egralesde Riemann (rapp elsde TMB)

3.2 {

Int egralesdoubles

3.3 {

Int egralestriples

3.4 {

Aire, volume, mo yenneet centre de masse

3.1 { Integrales de Riemann (rappels de TMB)

Dans cette section:

Subdivisions, somme de Riemann et integrale de Riemann d'une fonction d'une variable

Aire sous le graphe d'une fonction

Primitives et techniques d'integration

Subdivision, somme et integrale de Riemann

Rappels {Soitf:ra;bs ÑRune fonction d'une variable: subdivisiondera;bs:Sn taa0 a1 anbuR aa0 a nb a 1|x 1 a 2|x 2 a 3|x 3 a 4|x 4 a 5|x 5 somme de Riemann defaux pointsxiP rai1;ais: R pf;txiuq n¸ i1fpxiq:xfpxq a b integrale de Riemann defsurra;bs: b a fpxqdxlimnÑ8toutxiR pf;txiuqxfpxq a b si la limite existe, est nie, et ne depend pas desxi.

L'integrale donne l'aire sous le graphe

Rappels -

b a fpxqdxaire \algebrique" sous le graphe def b a |fpxq|dxaire sous le graphe def(positive) xyfpxq |f|f |f||f|Exemple:L'aire du disque se calcule comme une integrale:

AirepDq 2AirepDq 2»

1

1a1x2dxxy?1x2D

Primitives et techniques d'integration

Pour connaitre l'integral, il sut de connaitre une primitive: Uneprimitive defsurra;bsest une fonctionFderivable telle que F

1pxqfpxqpour toutxP ra;bs. On noteFpxq»

fpxqdx.

Theoreme fondamental:»b

a fpxqdxFpbqFpaq rFpxqsba:

Integration par changement de variable:xhptq»

fpxqdx» fhptqh1ptqdt; ouhest un dieomorphisme(bijection derivable avec reciproqueh1derivable).

Integration par parties:»

fpxqg1pxqdxfpxqgpxq » f

1pxqgpxqdx:Probleme {Pas d'analogue pour les fonctions de plusieurs variables!

Exemple: aire d'un disque

Aire d'un disque {

AirepDq 2AirepDq 2»

1

1a1x2dxCalcul par changement de variable:xsintpourtP r2

;2 s, car?1x2cost.Alorsdxcost dtet

AirepDq 2»

{2 {2cos2t dt 2» {2 {2cosp2tq 12 dt 12 sinp2tq t {2 {202 02

3.2 { Integrales doubles

Dans cette section:

Subdivisions des domaines du plan

Sommes de Riemann des fonctions de deux variables

Integrale double

Volume sous le graphe d'une fonction

Theoreme de Fubini

Theoreme du changement de variables

Subdivisions d'un domaine du plan

SoitD€R2un ensemble borne, avec bordBDlisse(au moins par morceaux). Denition {Pour tout¡0, on appellesubdivision deD l'ensembleSdes carresKide cotedu plan qui couvrentDdans n'importe quel grillage de pas.En particulier, on considere deux recouvrements: una l'exterieurSext, una l'interieurSint.S intS extD BDPuisqueDest borne, les subdivisions contiennent un nombre ni de carres, et on aSint€Sext. Les carres dansSextzSintcouvrent exactement le bordBD. Sommes de Riemann d'une fonction de deux variables

Soitf:DÝÑRune fonction de deux variables.

Denition {Pour tout choix de pointspxi;yiq PKiXD, on appellesommes de Riemann defassociees aux subdivisions S ext{int et aux pointstpxi;yiqules sommes R ext{int pf;tpxi;yiquq ¸ K iPSext{int fpxi;yiq2; ou chaque termefpxi;yiq2 represente levolume algebrique(=volume) du parallelepipede de base K iet hauteurfpxi;yiq. xyfpx;yqD

Integrale double

Theoreme {Si les limiteslimÑ0Rext{int

pf;tpxi;yiquqexistent et elles sont independantes du choix des pointspxi;yiq PKiXD, alors elles coincident.Denition {Dans ce cas: on appelleintegrale double defsurDcette limite: D fpx;yqdx dylimÑ0Rext{int pf;tpxi;yiquq: on dit quefest integrable surDselon Riemannsi l'integrale¼ D fpx;yqdx dyest nie (= nombre, pas8).Proposition {Toute fonction f continueest integrable selon Riemann sur un ensemble D bornea bord lisse(par morceaux).

Signication geometrique de l'integrale double

Corollaire {

D fpx;yqdx dyvolume \algebrique" sous le graphe de f . D |fpx;yq|dx dyvolume sous le graphe de f .yz x positifnegatiff |f||f|f

Exemple 1: volume d'une boule

Volume d'une boule {Le volume de la boule

est deux fois le volume de la demi-boule B qui se trouve sous le graphe de la fonction za1x2y2: yz xpx;yqzax 2y2B

On a alors

VolpBq 2¼

Da1x2y2dx dy

Proprietes des integrales doubles

Proprietes {1qPour tout;PR, on a

D fgdx dy¼ D f dx dy¼ D g dx dy:2qSi DD1YD2et D1XD2= courbe ou point ouH, alors D fpx;yqdx dy¼ D

1fpx;yqdx dy¼

D

2fpx;yqdx dy:3q¼

D D D D gpx;yqdx dy:

Theoreme de Fubini sur un rectangle

Theoreme de Fubini sur un rectangle {Soit f:DÝÑRune fonction continue et D ra;bs rc;dsun rectangle. Alors on a D fpx;yqdx dy» b a »d c fpx;yqdy dx d c »b a fpx;yqdx dyNotation { b a dx» d c dy fpx;yq » b a »d c fpx;yqdy dxCorollaire { ra;bsrc;dsf

1pxqf2pyqdx dy»

b a f

1pxqdx»

d c f

2pyqdy

Exemple 2: calcul d'integrales doubles

Exemples {

r0;1sr0;{2sxcosy dx dy» 1 0 x dx» {2 0 cosy dy 12 x21 0 siny {2 012 r1;1sr0;1spx2y1qdx dy» 1

1dx»

1 0 px2y1qdy 1 1dx12 x2y2y y1 y0 1 1 12 x21 dx16 x3x 1 1 53

Theoreme de Fubini

Lemme {Soit D€R2un ensemble borne quelconque.

Pour toutpx;yq PD

il existe a;bPR

Pour tout xP ra;bs

il existe cpxq;dpxq PR

Au nal:xy

bxacpxqdpxqD px;yq PR2|xP ra;bs;yP rcpxq;dpxqs(Theoreme de Fubini surD{Soit f:DÝÑRune fonction continue, alors D fpx;yqdx dy» b a

»dpxq

cpxqfpx;yqdy dx

Theoreme de Fubini (suite)

Alternative {

L'ensembleDest decrit parxy

d y c apyqbpyqD px;yq PR2|yP rc;ds;xP rapyq;bpyqs(Theoreme de Fubini surD{ D fpx;yqdx dy» d c

»bpyq

apyqfpx;yqdx dy

Exemple 3: calcul d'integrale double

Exemple {SoitDla partie du planxOydelimitee par l'arc de paraboleyx2en bas, et la droitey1 en haut.xy y1yx2

1On peut decrireDcomme

D px;yq PR2|xP r1;1s;yP rx2;1s(:Par consequent:

D x

2y dx dy»

1

1x2dx»

1 x 2y dy 1 1x212 y2 1 x 2dx 1 112
px2x4qdx 12 13 x315 x5 x1 x1215

Exemple 4: volume de la boule

Exemple {Rappelons que le volume de la boule unitaire est

VolpBq 2¼

Da1x2y2dx dy

11D ?1x2?1x2On peut decrireDcomme l'ensemble D! px;yq PR2|xP r1;1s;yPa1x2;a1x2)

Voici donc le calcul du volume de la boule:

VolpBq 2»

1

1dx»

?1x2 ?1x2a1x2y2dy 2» 1

1dx»

?1x2 ?1x2a1x2d1y21x2dy:

On posey?1x2sintpour avoirb1y21x2 |cost|.

Exemple 4: volume de la boule (suite)

y?1x2sint dy?1x2cost dt 2 etb1y21x2costVolpBq 2» 1

1dx»

?1x2 ?1x2a1x2d1y21x2dy 2» 1

1dx»

{2 {2a1x2costa1x2cost dt 2» 1

1p1x2qdx»

{2 {2cos2t dt puisque 2» {2 {2cos2t dt(voir ex. precedent)

VolpBq »

1

1p1x2qdx

x13x3 1 143:

Changement de variables

Denition {Unchangement de variables

px;yq hpu;vq xpu;vq;ypu;vq est un dieomorphismeh:~DÑD:pu;vq ÞÑhpu;vq px;yq, c'est-a-dire une bijection de classeC1avec reciproque h

1:DÑ~D:px;yq ÞÑh1px;yq pu;vqde classeC1.Theoreme {Soit f:DÑRune fonction des variablespx;yqet

px;yq hpu;vqun changement de variables. Alors D fpx;yqdx dy¼ D~ fpu;vqdetJhpu;vqdu dvou ~fpu;vq fphpu;vqq,~D pu;vq |hpu;vq PD( etdetJhpu;vq BxBuByBvBxBvByBuest le Jacobien de h.Passage en polaire {dx dydd'

Exemple 5: volume d'une boule en polaires

Volume de la boule en coordonnees polaires {On calcul

VolpBq 2¼

en coordonnees polairespx;yq hp;'q pcos';sin'q.

Puisquex2y22, on a :

on utilisedx dydd',a1x2y2a12et Fubini:

VolpBq 2»

1

0a12d»

2 0 d'4» 1 0a12d enn, on poset12doncdt 2d:VolpBq 42» 0 1 t1{2dt2» 1 0 t1{2dt223 t32 1 043:

3.3 { Integrales triples

Dans cette section:

Subdivisions des solides

Sommes de Riemann des fonctions de trois variables

Integrales triples

Theoreme de Fubini

Theoreme du changement de variables

Integrale triple

Soit

€R3un ensemble borneavec bordB

lisse(par morceaux), et soitf:

ÝÑRune fonction de trois variables.

Denition {

On choisit unesubdivisionSde

en petits cubesK ide taille3, avecqui tend vers zero. DR 3

On denit l'integrale triple defsur

comme la limite (quand elle existe) de lasomme de Riemannassociee aSet a des pointspxi;yi;ziq PKiX quelconque:½ fpx;y;zqdx dy dzlimÑ0¸ K iPSfpxi;yi;ziq3:

On dit quefestintegrablesi son integrale est nie.Proposition {Toute fonction f continueest integrable selon

Riemann sur un ensemble

bornea bord lisse(par morceaux).

Signication geometrique et proprietes

Signication geometrique {Le graphe de f est une

hyper-surfacedeR4(dicile a dessiner): fpx;y;zqdx dy dzquadri-volume\algebrique" sous le graphe de f .quotesdbs_dbs22.pdfusesText_28