[PDF] [PDF] Factorisation de polynômes de degré 3

Utilisation : Le polynôme P(x) = x3 −4x2 −7x +10 admet comme racine évidente le nombre 1 On peut donc le factoriser par (x − 1), ainsi, on sait qu'il existe un 



Previous PDF Next PDF





[PDF] Des identités - Apprendre-en-lignenet

régié, pourquoi ne pas s'attaquer à ceh ti des équations du troisième degré ? Là aussi, les identités remarquables sont d'un grand secours, mais il aura fallu du 



[PDF] Identités remarquables et factorisation - PAESTEL

Exercice 5 (Factorisation d'un polynôme de degré 3) On considère En reconnaissant le début d'une identité remarquable, trouver une factori- sation de a4 + 4 



[PDF] Factorisation de polynômes de degré 3

Utilisation : Le polynôme P(x) = x3 −4x2 −7x +10 admet comme racine évidente le nombre 1 On peut donc le factoriser par (x − 1), ainsi, on sait qu'il existe un 



[PDF] Démonstrations Les identités remarquables Les compétences

Dans le carré de côté a, hachurer l'aire d'expression a2 − b2 Définition : On appelle identités remarquables les résultats suivants, pour tous les réels a et b : • (a + 



[PDF] Programme de 3 en mathématiques

I Equations du premier degré à une inconnue 16 1 2 Deuxième façon : en utilisant les identités remarquables 63 Troisième identité remarquable : ( )( ) 2



[PDF] Identités remarquables et les équations sous la forme d - Blogpeda

A quoi ça sert ? Calculer plus vite avec des lettres et sans se tromper Sans utiliser les identités remarquables : Avec une identité remarquable :



[PDF] ALGÈBRE - Disciplines

Le degré n du polynôme, c'est la plus grande puissance de la variable qu'il contient Notation : deg(P) très souvent ; elles sont appelées les identités remarquables produits 1er jour A et B 6 4500 2ème jour A et C 8 3600 3ème jour



[PDF] Exercices Identités Remarquables - Collège René Cassin

a) ( )2 2 x + ; b) ( )2 5 a + ; c) ( )2 7 a + ; d) ( )2 3 5 x + ; e) ( )2 6 5a + ; f) 2 1 3 2 x + Correction : a) ( )2 2 A x = + b) ( )2 5 B a =



[PDF] Identités remarquables, équation produit nul

Développer avec des identités remarquables Une façon Le développement du 1er membre aboutirait à une équation du 2ème degré que nous ne savons pas résoudre (parmi tous les nombres que l'on connaît en 3ème) x² = 0 Il n'y a que  



[PDF] Exercice identité remarquable 3eme pdf - f-static

Cours sur le développement, l'affacturage et l'identité remarquable 9 Exercices math 3eme identité remarquable identité remarquable 3eme degré exercice

[PDF] Les identités remarquables, factorisation

[PDF] Les îles Kiribati

[PDF] les illusions d'optique

[PDF] les illusions d'optique exposé

[PDF] Les images

[PDF] les images choquante

[PDF] Les images d'un nombre

[PDF] Les images détournées

[PDF] les images en mouvement

[PDF] Les images formées par une lentille mince

[PDF] Les Imigrés en France

[PDF] LES IMMOBILISATIONS

[PDF] Les impacts dans le monde au XVe siècle

[PDF] les impacts écologiques de nos choix alimentaires svt

[PDF] Les impacts en Europe et le monde

Pour aller plus loin...

Factorisation de polynômes de degré 3Théorème (admis)

Si un polynômePde degré 3 admet une racine réelle®, alors ce polynôme est factorisable par (x¡®).

on a alors :P(x)AE(x¡®)£Q(x) oùQ(x) est un polynôme de degré 2.Utilisation :Le polynômeP(x)AEx3¡4x2¡7xÅ10 admet comme racine évidente le nombre 1.

On peut donc le factoriser par (x¡1), ainsi, on sait qu"il existe un polynômeQde degré 2 tel que, pour tout réelx,P(x)AE

(x¡1)£Q(x).

Détermination du polynômeQ.

Première méthode :identification des coefficients. Cette méthode utilise le théorème suivant :

Théorème (admis)

Deux polynômes sont égaux si et seulement si ils ont le même degré et les mêmes coefficients.CommeQest un polynôme de degré 2, il s"écrit sous la formeQ(x)AEax2ÅbxÅc.

On a donc, (x¡1)£Q(x)AEax3Åbx2Åcx¡ax2¡bx¡cAEax3Å(b¡a)x2Å(c¡b)x¡c.

On en déduit que :8>>>><

>>>:aAE1 b¡aAE¡4 c¡bAE¡7

¡cAE10donc que8

:aAE1 bAE¡3 cAE¡10 Le polynômePs"écrit donc :P(x)AE(x¡1)(x2¡3x¡10).

Exercice :finir de factoriserP.

Deuxième méthode :division euclidienne de polynômes. x

3¡4x2¡7xÅ10x¡1X

3¡x2¡3x2¡7xÅ10x

2¡3x¡10

¡3x2Å3x¡10xÅ10¡10xÅ100

NB : ces méthodes fonctionnent avec des polynômes de degré supérieur à 3. Exercice 1 :factorisez au maximum les polynômes suivants :

1.P(x)AE6x3Å11x2¡3x¡2.

2.P(x)AEx3¡x2¡x¡2.

Exercice 2 :résoudre l"équationx2¡3xÅ52

AE1xÅ1.

quotesdbs_dbs3.pdfusesText_6