[PDF] [PDF] Calculs dintégrales et de primitives

Intégration des fonctions rationnelles a) Fonctions rationnelles Dé nition 2 1 Une fonction ou fraction rationnelle F sur R est le quotient de deux fonctions



Previous PDF Next PDF





[PDF] Calculs dintégrales et de primitives

Intégration des fonctions rationnelles a) Fonctions rationnelles Dé nition 2 1 Une fonction ou fraction rationnelle F sur R est le quotient de deux fonctions



[PDF] Primitives de fractions rationnelles

Rappelons qu'une fraction rationnelle est une fonction du type : Pour déterminer une primitive d'une telle fonction f on procède par étapes : 1 Si deg



[PDF] Fractions rationnelles - Décomposition en éléments simples

Définition 4 2 On appelle fraction rationnelle toute classe d'équivalence pour ⇠ L'ensemble toujours calculer une primitive (en théorie du moins) L'outil 



[PDF] 174 Techniques de calcul des primitives et des intégrales

et la primitive revient `a celle d'une fraction rationnelle 2) Si a < 0, b2 −4ac > 0 Alors ax2 +bx +c poss`ede deux zéros réels p, q 



[PDF] Décomposition en éléments simples et Calcul intégral

Soient F et G deux fractions rationnelles non-nulles Exercice 9 Déterminer les primitives, et préciser leur intervalle de validité, de la fonction x ↦→ arcsin2 x



[PDF] Fractions rationnelles - Maths-francefr

2 Décomposition en éléments simples d'une fraction rationnelle non nulle sur un corps Essayons de déterminer les primitives sur ]0, +∞[ de la fonction F : x ↦ 



[PDF] Liste dexercices n 7 : Calcul de primitives 1 Fractions rationnelles 2

Exercice 2 Calculer les primitives des fonctions suivantes 1 esin2 x sin 2x , 2 cos5 x , (ch x) 3 , 



[PDF] Fonctions polynômes, fractions rationnelles Applications - LAMA

Calculer certaines sommes infinies comme ∑ 1 k(k+1)(k+2) – Calculer la dérivée n-ième d'une fraction rationnelle – Calculer les primitives ou les intégrales 



[PDF] Calcul de Primitives 1 Primitives usuelles 2 Primitives de Fractions

Calcul de Primitives Dans toute la suite, on appelera F ∈ R(X) ou C(X) cad F est une fraction rationnelle, F = P Q avec P,Q polynômes 1 Primitives usuelles



[PDF] TD – Fractions rationnelles et décomposition en - Annuaire IMJ-PRG

Une fraction rationnelle de degré n ∈ N est un polynôme Exercice 4 : Primitives de fractions rationnelles 1 Calculer une primitive sur R de x ↦− → x3

[PDF] primitive de uv

[PDF] calculer cardinal probabilité

[PDF] cardinal d'un ensemble exercices corrigés

[PDF] calculer un cardinal

[PDF] cardinal de l ensemble des parties d un ensemble

[PDF] formule cardinal probabilité

[PDF] comment calculer cardinal avec calculatrice

[PDF] intersection probabilité formule

[PDF] comment calculer p(a)

[PDF] diviser des puissances de 10

[PDF] méthode de horner factorisation d'un polynôme

[PDF] méthode de horner exercices

[PDF] methode de horner pdf

[PDF] methode de horner algorithme

[PDF] horner method

Calculs d"intégrales

et de primitives

Aimé Lachal

Cours de mathématiques

1 ercycle, 1reannée

Sommaire

1Deux techniques d"intégration

Intégration par parties

Changement de variable

2Intégration des fonctions rationnelles réelles

Fonctions rationnelles

Exemples préliminaires

Décomposition en éléments simples

Intégration des éléments simples

Synthèse de la méthode d"intégration

Exemples de synthèse

Sommaire

1Deux techniques d"intégration

Intégration par parties

Changement de variable

2Intégration des fonctions rationnelles réelles

1. Deux techniques d"intégrationa) Intégration par parties

Notations

On a vu dans le chapitre "Intégrale de Riemann» que toute fonction continue sur un intervalleIadmet des primitives et que celles-ci diffèrent toutes 2 à 2d"une constante.

On noterax7!Z

f(x)dxune primitive defsurIdéfinie donc à une constante additive près. On dit queZ f(x)dxest une intégraleindéfiniepar opposition àZ b af(x)dxqui est appelée intégraledéfinie.

Exemple :

Z xdx=12 x2+CsteoùCstedésigne une constante réelle.

On rappelle la notationF(x)b

a=F(b)F(a).Théorème 1.1 (Intégration par parties) Soituetvdeux applications declasseC1C1C1définies sur un intervalleIà valeurs réellesoucomplexes.18(a;b)2I2,Z b a u(x)v0(x)dx=u(x)v(x)b aZ b a u0(x)v(x)dx.2Z u(x)v0(x)dx=u(x)v(x)Z u

0(x)v(x)dx.

Formulation mnémotechnique :Z

udv=uvZ vdu.1

1. Deux techniques d"intégrationa) Intégration par parties

Exemple 1.2 (Polynôme-logarithme)

SoitP2R[X]un polynôme de degrén.

En choisissantu(x) = ln(x)etv0(x) =P(x), alorsu0(x) =1x etv(x) =Q(x)oùQ est un polynôme primitive deP(de degrén+1) que l"on choisira sans terme constant (de façon à avoirQ(0) =0), l"IPP donneZ

P(x) ln(x)dx=Q(x) ln(x)ZQ(x)x

dx:

Notons quex!Q(x)x

est une fonction polynôme de degrén(puisqueQ(0) =0), elle admet donc pour primitive une fonction polynômeRde degrén+1, et l"on trouve :Z

P(x) ln(x)dx=Q(x) ln(x)R(x) +Cste:

Exemples :

pourP(x) =1, on choisitQ(x) =xqui donneR(x) =xet l"on obtient une primitive deln(x):Z ln(x)dx=xln(x)x+Cste: pourP(x) =xn, on choisitQ(x) =xn+1n+1qui donneR(x) =xn+1(n+1)2et l"on obtient :Z x nln(x)dx=xn+1n+1ln(x)xn+1(n+1)2+Cste:2

1. Deux techniques d"intégrationa) Intégration par parties

Exemple 1.3 (Polynôme-exponentielle)

Soita2RetP2R[X]un polynôme de degrén.

En choisissantu(x)=P(x)etv0(x)=eax, alorsu0(x)=P0(x)etv(x)=1a eaxet l"IPP donneZ

P(x)eaxdx=1a

P(x)eax1a

Z P

0(x)eaxdx:

Notons queP0est un polynôme de degrén1. Ainsi, l"IPP permet d""abaisser» le degré du polynôme présent dans l"intégrande initiale. En réitérant ce procédé, on abaisse progressivement le degré dePpour arriver in fine à une primitive d"intégrande e ax:Z

P(x)eaxdx=Q(x)eax+Cste

oùQest le polynôme de degréns"exprimant selon

Q(x)=1a

P(x)1a

2P0(x)+1a

3P00(x)+(1)n1a

n+1P(n)(x)=nX k=0(1)k1a k+1P(k)(x): Application :supposons le réelanégatif. Alors, pour toutk2N,limx!+1P(k)(x)eax=0.

Ainsi, en notantZ

+1 0 = limA!+1Z A 0 , on trouve Z +1 0

P(x)eaxdx=nX

k=0(1)k+11a k+1P(k)(0):3

1. Deux techniques d"intégrationa) Intégration par parties

Exemple 1.4 (Exponentielle complexe)

Soita;bdeux réelsnon simultanément nuls.Supposons e.g.a6=0 (sinonb6=0). En choisissantu(x)=cos(bx)etv0(x)=eax, alorsu0(x)=bsin(bx)etv(x)=1a eax et l"IPP donne Z cos(bx)eaxdx=1a cos(bx)eax+ba Z sin(bx)eaxdx: En choisissantu(x)=sin(bx)etv0(x)=eax, alorsu0(x)=bcos(bx)etv(x)=1a eax, une nouvelle IPP donneZ sin(bx)eaxdx=1a sin(bx)eaxba Z cos(bx)eaxdx que l"on reporte dans la première formule : Z cos(bx)eaxdx=1a cos(bx) +ba

2sin(bx)

e axb2a 2Z cos(bx)eaxdx d"où l"on extrait Z cos(bx)eaxdx=acos(bx) +bsin(bx)a

2+b2eax+Cste:

La même méthode conduirait à

Z sin(bx)eaxdx=bcos(bx) +asin(bx)a

2+b2eax+Cste:

Application :soitc2C. En posantc=a+ibaveca;bréels non simultanément nuls, et en rappelant que e cx=eaxcos(bx) +isin(bx), on obtient une primitive de x7!ecx:Z e cxdx=1cecx+Cste:4

1. Deux techniques d"intégrationa) Intégration par parties

Exemple 1.5 (Formule de Taylor avec reste intégral(facultatif))1Un calcul préliminaire Soita;bdeux réels etfune application définie sur[a;b](ou[b;a]) declasseC2C2C2. En choisissantu(x)=(bx)etv0(x)=f00(x), alorsu0(x)=1 etv(x)=f0(x)et l"IPP donneZb a (bx)f00(x)dx=(bx)f0(x)b a+Z b a f0(x)dx=f(b)f(a)f0(a)(ba) soit f(b) =f(a) +f0(a)(ba) +Z b a (bx)f00(x)dx:2Généralisation Soita;bdeux réels etfune application définie sur[a;b](ou[b;a]) declasse C n+1Cn+1Cn+1. Alors : f(b) =nX k=0f (k)(a)k!(ba)k+Z b a(bx)nn!f(n+1)(x)dx: Remarque :la fonctionf(n+1)étant continue, on peut appliquer la formule de la moyenne :

9c2[a;b];Z

b a(bx)nn!f(n+1)(x)dx=f(n+1)(c)Z b a(bx)nn!dx=(ba)n+1(n+1)!f(n+1)(c): On retrouve la formule de Taylor-Lagrange avec des hypothèses plus fortes. (La formule de Taylor-Lagrange requière quefsoit de classeCnsur[a;b]et (n+1)fois dérivable sur]a;b[.)5

1. Deux techniques d"intégrationb) Changement de variable

Théorème 1.6 (Changement de variable pour le calcul d"intégrales)

1Soit'une application declasseC1C1C1sur[a;b]à valeursréellesetfune

applicationcontinuesur l"intervalle'([a;b])à valeursréellesoucomplexes.

Alors :

Zb a f'(t)'0(t)dt=Z '(b) '(a)f(x)dx:2Si, de plus,'estbijectivede[a;b]sur[;] ='([a;b]), Z f(x)dx=Z '1()

1()f'(t)'0(t)dt:

Formellement, on posex='(t)et l"on écritdx='0(t)dt.Théorème 1.7 (Changement de variable pour le calcul de primitives)

SoitIetJdeux intervalles,fune applicationcontinuesurIà valeursréellesou SiGest une primitive de(f')'0surJ, alorsG'1est une primitive defsurI. Autrement dit, en posantx='(t)(ou encoret='1(x)) : Z f(x)dx=Z f'(t)'0(t)dt=G(t) +Cste=G'1(x)+Cste6

1. Deux techniques d"intégrationb) Changement de variable

Exemple 1.8 (Racine carrée d"un polynôme du 2 nddegré)Soitfune fonction continue surR. On propose une méthode de calcul de primitives des fonctionsx7!fpx

2+1,x7!fp1x2etx7!fpx

21.1Le changement de variablex=shtfournit dx=chtdtetpx

2+1=cht, puisZ

fpx 2+1 dx=Z f(cht)chtdt: Si l"on dispose d"une primitiveFde la fonctiont7!f(cht)cht, alorsZquotesdbs_dbs22.pdfusesText_28