[PDF] [PDF] Forme trigonométrique dun nombre complexe Applications Niveau

Exemple : z = 3 – 2i est un nombre complexe Exemple : z = 3 – 2i Ecrire les conjugués des nombres suivants sous forme algébrique 1 -2 +3i 2 i(2-5i) 3



Previous PDF Next PDF





[PDF] Conjugué dun nombre complexe - La taverne de lIrlandais

Corollaire : les seuls complexes qui sont leurs propres conjugués sont les nombres réels En effet : ( ) Les seuls complexes dont la partie imaginaire est nulle sont 



[PDF] Nombres complexes - Studyrama

Le conjugué de z est le nombre complexe z x iy = − Exemple Le conjugué de 3 5i − est 3 5i Nombre complexe conjugué, nombre réel et imaginaire pur



[PDF] Forme trigonométrique dun nombre complexe Applications Niveau

Exemple : z = 3 – 2i est un nombre complexe Exemple : z = 3 – 2i Ecrire les conjugués des nombres suivants sous forme algébrique 1 -2 +3i 2 i(2-5i) 3



[PDF] Les nombres complexes - Maths-francefr

Par exemple, la partie imaginaire de 3 + 2i est 2 et n'est pas 2i Définition 3 Les nombres Le conjugué du nombre z est le nombre complexe noté z défini par



[PDF] Forme algébrique des nombres complexes - Maths-francefr

La forme algébrique d'un nombre complexe est a + ib où a et b sont deux réels Si z = a + ib où a Le conjugué marche bien avec tout » : Pour tout nombre complexe z et tout nombre complexe non nul z′, ( zz′ ) = zz′ Exemple Pour x 



[PDF] cours nombres complexes - Fabrice Sincère

11- Division de deux nombres complexes 12- Nombre complexe conjugué 13- Exemples d'application en électricité : les impédances complexes



[PDF] NOMBRES COMPLEXES - Chamilo

Exemples II PROPRIETES ELEMENTAIRES - DEFINITIONS 1 Nombre Le conjugué d'un nombre complexe s'obtient en changeant le signe de sa partie



[PDF] 1 Calculs dans C : addition, multiplication, module, inverse, conjugué

Le conjugué d'un nombre complexe z est : ¯z = (z) − i(z) ∈ C Par exemple, 4+ 3i = √ 42 + 32 = √ 25 = 5 et 



[PDF] Nombres complexes

Exemple : On a 1−2i = 1+2i Remarque : La quantité conjugué permet de voir 1 z comme un nombre complexe lui aussi Proposition 2 : Pour z et z′ deux 

[PDF] conjugué de i

[PDF] conjugué d'un nombre complexe quotient

[PDF] nombre complexe conjugué demonstration

[PDF] conjugué complexe exponentielle

[PDF] inverse d'un nombre complexe

[PDF] conjugue les verbes entre parenthèses au présent de l'indicatif

[PDF] conjuguer les verbes entre parenthèses au passé composé

[PDF] conjuguer les verbes entre parenthèses au temps qui convient

[PDF] mets les verbes entre parenthèses au présent

[PDF] tout les temps de l'indicatif

[PDF] preterit be ing anglais

[PDF] pluperfect en anglais

[PDF] preterit be ing ou preterit simple

[PDF] preterit have

[PDF] preterit be ing equivalent francais

[PDF] Forme trigonométrique dun nombre complexe Applications Niveau Leçon n°8 : Forme trigonométrique d'un nombre complexe. Applications

Niveau : Terminale S

Pré-requis : équations du second degré dans R. Trigonométrie dans R. Vecteurs.

Plan :

I.Forme algébrique d'un nombre complexe

1.Théorème et définition

2.Conjugué d'un nombre complexe

3.Représentation dans le plan complexe

4.Equations du second degré dans C

II.Forme trigonométrique d'un nombre complexe

1.Module et argument

2.Forme trigonométrique d'un nombre complexe

3.notation exponentielle de la forme trigonométrique

III.Applications

1.Applications à la trigonométrie

2.Applications à la géométrie

I. Forme algébrique d'un nombre complexe

1°) Théorème et définition

Exemple : z = 3 - 2i est un nombre complexe.

Exemple : z = 3 - 2i → 3 est la partie réelle et -2 est la partie imaginaire.

Remarques :

•z est un réel si et seulement si Im(z)=0 •z est un imaginaire pur si et seulement si Re(z)=0. •Comme la forme algébrique d'un nombre complexe est unique, deux nombres complexes

sont égaux si et seulement s'ils ont la même partie réelle et la même partie imaginaire. En

particulier, x+ iy = 0 ssi x=0 et y=0.

Exercice:

Résoudre dans C les équations suivantes : 1. 2z+ i = 2-i2. 3z +1 -2i = 4 - 3i -2z

2°) Conjugué d'un nombre complexe

a) Définition Exemple : z = 3 - 2i d'où z = 3- 2i = 3 + 2i. b) Propriétés sur le conjugué - Démonstrations des propriétés -

Exercice:

Ecrire les conjugués des nombres suivants sous forme algébrique.

1. -2 +3i2. i(2-5i)3. (1- i)/2i

3°) Représentation dans le plan complexe

a) Affixe d'un point

Exemples :

Le point M d'affixe 3+i a pour coordonnées (3; 1). Le point N d'affixe -1 -i a pour coordonné (-1; -1). - Démonstration -

Exercice:

Dans le plan complexe, on considère les points A(1-3i), B(5+2i) et C(4-4i). Déterminer l'affixe du

point D tel que ABCD soit un parallélogramme. b) affixe d'un vecteur

Exemple :

Le vecteur OM d'affixe 3+i a pour coordonnés (3 1) Le vecteur PN d'affixe 1-2i a pour coordonnés (1 -2) - Démonstration - Exercice: Montrer que les points A(-2i), B(-2-5i) et C(4+4i) sont alignés.

4°) Equations du Second degré dans C

a) Equation du type az2+bz+c = 0 - Démonstration -

Exercice :

Résoudre dans C les équations suivantes :

1. z²+ 3z +4 = 02. z4 +2z2 -8 = 0

b) Factorisation d'un trinôme du second degré - Démonstration -

II. Forme trigonométrique d'un nombre complexe

1°) Module et argument d'un nombre complexe

a) définition b) premières propriétés Exercice : On considère les points A, B et C d'affixes respectives a=2i , b=-3, c=-2 +2i.

1. Représenter ces points dans le plan complexes

2. Déterminer le module et un argument de chacun de ces nombres.

2 °) Forme trigonométrique d'un nombre complexe

a) Définition b) propriétés sur les modules et arguments - Démonstration -

3°) notation exponentielle de la forme trigonométrique

a) la notation eiO

Définition :

b) propriété et définition -Démonstration -

III.Applications

1°) Application à la trigonométrie

Calcul de valeurs exactes d'angles :

2°) Application géométrique

a) déterminer des lieux géométriques avec des complexes b) étudier une configuration géométrique avec des complexesquotesdbs_dbs29.pdfusesText_35