[PDF] [PDF] Chapitre 13 :Fonctions hyperboliques

Chapitre 13 : Fonctions hyperboliques Analyse réelle et complexe Page 3 sur 8 F) Fonction th (tangente hyperbolique) 1 1 ch sh th 2 2 + − = + − = = • −



Previous PDF Next PDF





[PDF] Chapitre 13 :Fonctions hyperboliques

Chapitre 13 : Fonctions hyperboliques Analyse réelle et complexe Page 3 sur 8 F) Fonction th (tangente hyperbolique) 1 1 ch sh th 2 2 + − = + − = = • −



[PDF] FONCTIONS HYPERBOLIQUES 4 ( )

FONCTIONS HYPERBOLIQUES 4 http://ginoux univ-tln 2 Limites : • 0 1 lim 1 x x e x → − = • lim x x e →∞ = +∞ La fonction tangente hyperbolique



[PDF] Fonctions hyperboliques

On appelle fonction cosinus hyperbolique la fonction ch : R → R,x ↦→ chx = ex + e−x 2 En ce qui concerne les limites, on a ex −−−−→ x→+∞



[PDF] 1) a) La fonction sinus hyperbolique : sh(x) = b) La fonction cosinus

sh(x)=+∞ • Limite en −∞ : lim x→−∞ ex = 0 et lim



[PDF] Synthèse de cours PanaMaths → Fonctions hyperboliques

On appelle « sinus hyperbolique », « cosinus hyperbolique » et « tangente La fonction cosinus hyperbolique est paire Limites en −∞ et en +∞ ( ) ( ) ( )



[PDF] Fonctions hyperboliques

La fonction cosinus hyperbolique est définie sur R par ch x = ex +e−x 2 • Elle est paire : pour tout réel x, ch(−x) = ch x La courbe représentative de ch admet 



[PDF] Les fonctions de référence

10 1 2 Définition des fonctions sinus hyperbolique et cosinus hyperbolique Cette expression n'a pas de limite réelle quand x tend vers −1 et donc f n'est pas  



[PDF] Outil Mathématiques 1 - Université de Rennes 1

La fonction cosinus hyperbolique La fonction tangente hyperbolique position limite : c'est la tangente à Cf en A La tangente a pour pente f (a) et passe 



[PDF] Les Fonctions Hyperboliques - Page de Helkanen

On appelle cosinus hyperbolique la fonction : ch : R −→ R On appelle tangente hyperbolique la fonction : th : Les limites en ±∞ de ces fonctions sont : lim



[PDF] Théorie des fonctions hyperboliques - Numdam

cosinus hyperbolique, sinus hyperbolique, tangente circulaire, une tangente hyperbolique est un sinus cir- d'une limite de l'intégration à l'autre : on consi-

[PDF] up and down tome 5

[PDF] ch(0)

[PDF] up and down entre deux pdf

[PDF] candidature définition

[PDF] je suis vivement intéressée par votre offre d'emploi

[PDF] phrase d'accroche lettre de motivation candidature spontanée

[PDF] pourquoi postulez vous pour ce poste

[PDF] pourquoi avez vous choisi notre entreprise reponse

[PDF] lettre de motivation maison de retraite sans experience

[PDF] envoute moi ekladata

[PDF] mon expérience professionnelle m'a permis de développer

[PDF] mes expériences professionnelles m'ont permis d'acquérir

[PDF] m'a permis d'acquérir synonyme

[PDF] numéro rcs exemple

[PDF] cette expérience m'a permis d'acquérir des compétences en matière

ĕ (O,⃗i,⃗j)

xPR x=ex+e´x 2 x=ex´e´x 2 x=x x x‰0,x=x x

2x´2x= 1

xPR 2x´2x= (x´x)(x+x) =e´xex= 1 ()1(x) =x,xÑ+8x= +8,xÑ+8x x = +8,(0) = 0 RR e x= 1 +x+x2 2! +¨¨¨+xn n!+o(xn) e

´x= 1´x+x2

2! +¨¨¨+ (´1)nxn n!+o(xn) x=x+x3 3! +¨¨¨+x2p+1 (2p+ 1)!+o(x2p+2) ()1(x) =x,xÑ+8x= +8,xÑ+8x x = +8,(0) = 1

R+[1,+8[

0 x= 1 +x2 2! +¨¨¨+x2p (2p)!+o(x2p) (2= R+ R´ x´x=e´x x´x 0+8 %x=t y=ttPR %x=t y=t tPR

˛M (t,t),tPR tą0 2t´2t= 1

M(x,y)

tPR y=t ā 2t´2t= 1 x

2´y2= 1 x2=2t xą0x=t

x=x x=ex´e´x e x+e´x=e2x´1 e 2x+1 C8R ()1(x) =2x´2x

2x= 1´2x=1

2x xÑ+8x=xÑ+8e2x´1 e

2x+1= 1

R]´1,1[

0 x=x+ax3+bx5+o(x5) ()1(0) = 1

1x= 1 + 3ax2+ 5bx4+o(x4)

2x=x2(1 +ax3+o(x2))2=x2(1 + 2ax2+o(x2))

1´2x= 1´x2´2ax4+o(x2) = ()1(x)

%3a=´1

5b=´2a $

%a=´1 3 b=2 15 x=x´1 3 x3+2 15 x5+o(x5) ()1(x) =2x´2x

2x= 1´2x=´1

2x x=1 x+x=exx´x=e´x2x´2x= 1 (a+b) =aˆb+aˆb(a+b) =aˆb+aˆb aˆb+aˆb=1 4 ((ea+e´a)(eb+e´b) + (ea´e´a)(eb´e´b)) 1 4 1 4 (2ea+b+ 2e´a´b)=(a+b) (a+b) =a+b

1 +aˆb

(a+b) =aˆb+bˆa aˆb+bˆa=a+b

1 +aˆb

ĕ Ŀ ŀ aˆb

(2a) =2a+2a= 1 + 22a= 22a´1 (2a) = 2aˆa (2a) =2(a) 1 +2a

ĕ xPR t=x

2 x=1 +t2

1´t2x=2t

1´t2x=2t

1 +t2 (2a) =2a+2a=2a+2a

2a´2a=1+2a

1´2a 2a

ā (2a) x= 2a

(a+b) +(a´b) = 2aˆb (a+b)´(a´b) = 2aˆb (a+b) +(a´b) = 2aˆb (a+b)´(a´b) = 2aˆb %x=a+b y=a´b C8 @xPR,1(x) =1

1((x))=1

((x))=1 b

1 +2((x))

@xPR,1(x) =1 1 +x2 x"0x x,yPR y=xðñy=xðñey´e´y 2 =xðñe2y´2xey´1 = 0 x˘? 1 +x2 y=xðñey=x´a

1 +x2ey=x+a

1 +x2

ðñey=x+a

1 +x2

ðñy=(

x+a

1 +x2)

@xPR,x=( x+a

1 +x2)

C8 [0,+8[[1,+8[

C8]1,+8[

@xP]1,+8[,1(x) =1

1((x))=1

((x)loooomoooon

ą0)=1

b

2((x))´1

@xP]1,+8[,1(x) =1 x

2´1

2 =x e y+e´y 2 =xðñe2y+ 1´2xey= 0ðñey=x+a x

2´1ey=x´a

x

2´1

x+? x

2´1ěxě1x´?

x x

2´1)(x´?

x

2´1) = 1

yě0eyě1 e y=x+a x

2´1ey=x´a

x

2´1ðñey=x+a

x

2´1

ðñy=(

x+a x

2´1)

@xP[1,+8[,x=( x+a x

2´1)

]´1,1[ C8

1= +8,0 = 0,x"0x

@xP]´1,1[,1(x) =1

1(x)=1

1´2(x)=1

1´x2

e y+e´yĘ xP]´1,1[ 1

1´x2=1

1´xˆ1

1 +x=1

2 1

1´x+1

1 +x) xÞÑ1

1´x2 xÞÑ1

2 (|1 +x| ´|1´x|) @xP]´1,1[,1 2 (|1 +x| ´|1´x|) =1 2 |1 +x

1´x|=1

2 (1 +x

1´x)

xÞÑ1 2 (1 +x

1´x)

0 @xP]´1,1[,x=1 2 (1 +x

1´x)

@xPRz[´1,1],1(x) =1

1´x2

@xPRz[´1,1],x=1 2 |1 +x

1´x|+=1

2 (x+ 1 x´1)quotesdbs_dbs45.pdfusesText_45