[PDF] Preuves pour démontrer linéga- lité entre moyennes



Previous PDF Next PDF







2 Comparaison des moyennes arithmétique et géométrique

La moyenne géométrique de a et b est le réel √ ab Exemple Vérifier que si a et b sont deux côtés d’un rectangle, alors a+b 2 est le côté d’un carré ayant le même périmètre que ce rectangle et √ ab le côté d’un carré ayant même aire que ce rectangle 2 Comparaison des moyennes arithmétique et géométrique 1



comparaison des moyennes - SFR

Comparaison des moyennes harmonique, géométrique et arithmétique 1 Pour tout x>0, on pose f(x) =lnx−x+ 1 De l'étude de f, déduire que, pour tout x>0,



Comparaison de Moyennes et ANOVA - monnanoweeblycom

Comparaison de moyennes et ANOVA Id ee de base Types de moyenne Liens entre les 3 types de moyenne, f-moyenne Soit f fonction continue strictement monotone sur l’intervalle I ˆIR Soit x 1; ;x n une s erie de valeurs de I Il existe un unique el ement m de I tel que f(m) = 1 n Xn i=1 f(x i) Preuve existence: min i=1; ;n f(x i) 1 n Xn i=1 f



Tests de comparaison de deux Moyennes

Fabrice Mazerolle, « Moyenne Arithmétique », 2012 (consulté le 13 février 2012) 2 [PDF]Gilles Costantini, « Moyennes », 2003 (consulté le 21 août 2011)



A LA DÉCOUVERTE DES DIFFÉRENTES MOYENNES

Activité n°1 : moyenne arithmétique, arithmétique pondérée et élaguée 1) Les notes sur 20, obtenues en Mathématiques par un élève au cours du trimestre, sont les suivantes : Devoirs DS1 DS2 DS3 DM1 DM2 Notes 9 12 7 15 13 a) Calculer la moyenne trimestrielle de cet élève si les notes ne sont affectées du même coefficient



In´egalit´es souvent rencontr´ees - Université de Sherbrooke

Le nom de cette in´egalit´e vient du fait qu’elle compare la moyenne arithm´etique a 1 + 2 ··· n n avec la moyenne g´eom´etrique n √ a 1a 2 ···a n Voici quelques id´ees qui permettent d’obtenir l’IAG pour n = 4 et n = 3 Exemple 1 4 Montrer IAG dans le cas n = 4 Solution: On applique le cas n = 2 a a,b puis a c,d Ainsi



Preuves pour démontrer linéga- lité entre moyennes

lité entre moyennes arithmétique et géométrique Jacques Bair Mots clés : Moyennes arithmétique et géométrique, analyse et synthèse, preuves sans mots, preuves par récurrence Résumé L'inégalité entre moyennes arithmétique et géométrique pour des nombres positifs est importante en mathématiques



Club Mathématique de NancyInstitut Élie Cartan Différentes

l’aller et de 4m/s au retour Quelle est sa vitesse moyenne? Définition 0 1 Soient x et y des réels 1 Leur moyenne quadratique est Q ˘ s x2 ¯y2 2 2 Leur moyenne arithmétique est A ˘ x¯y 2 3 S’ils sont positifs, leur moyenne géométrique est G ˘ p xy 4 S’ils sont strictement positifs, leur moyenneharmonique est H ˘ 2 1 x



recueil de problèmes - u-bourgognefr

Exprimer la moyenne m de ces n notes à l’aide des nombres n, x1, x2, , xn Vocabulaire : ce type de moyenne est appelé « moyenne arithmétique » La moyenne arithmétique de deux nombres a et b est le nombre m vérifiant l’égalité : 2 ab m À retenir : pour calculer la moyenne arithmétique de plusieurs valeurs :



Comparaison des masques de protection respiratoire filtrants

Comparaison des masques de protection respiratoire filtrants FFP2, KN95 et N95 et d’autres masques de protection respiratoire filtrants Description Les pièces faciales filtrantes jetables, aussi appelées masques de protection respiratoire jetables sont soumis à diverses normes réglementaires dans le monde

[PDF] inégalité moyenne arithmétique géométrique harmonique

[PDF] moyenne harmonique exercices corrigés

[PDF] moyenne quadratique exercice corrigé

[PDF] comparaison moyenne arithmétique géométrique harmonique quadratique

[PDF] moyenne géométrique exemple

[PDF] les moyennes arithmetique geometrique et harmonique

[PDF] moyenne calcul

[PDF] comment calculer la moyenne générale du trimestre

[PDF] calculateur de moyenne bac

[PDF] arcsin(sinx)

[PDF] arcsin arccos arctan cours pdf

[PDF] arctan formule

[PDF] appréciation 3eme trimestre primaire

[PDF] y=ax+b signification

[PDF] je cherche quelqu'un pour m'aider financièrement

Inégalité arithmético-géométrique

Preuves pour démontrer l"inéga-

lité entre moyennes arithmétique et géométrique

Jacques Bair

Mots clés : Moyennes arithmétique et géométrique, analyse et synthèse, preuves sans mots, preuves par récurrence.

Résumé.L"inégalité entre moyennes arithmétique et géométrique pour des nombres positifs est importante

en mathématiques. Elle peut être démontrée de multiples façons.

Nous donnons un aperçu de quelques preuves qui nous semblent à la fois esthétiques et accessibles pour

des élèves de fin du secondaire ou du début du supérieur.

Nous en profitons pour émettre quelques réflexions générales relatives aux démonstrations.

1. Introduction

Nous nous proposons de prouver, de diverses ma-

nières, un résultat fondamental dans la théorie des nombres : il s"agit de l"inégalité arithmético- géométrique(IAG en abrégé, encore appelée dans la littérature lethéorème des moyennes arithmé- tique et géométrique); elle sera notée simplement I npour un entier positifnquelconque. Nous consi- dérons des nombres positifsa1,a2, ...,anet allons donc démontrerIn, à savoir : a

1+a2+...+an

n?n⎷a1a2...an Nous ne nous attarderons pas sur le fait qu"il s"agit d"une égalité si et seulement si tous les nombresai considérés sont les mêmes, et donc que l"inégalité en question est stricte en général. De même, nous ne chercherons pas à fournir des applications (pourtant fort nombreuses) de cette relation, ni à l"étendre à d"autres moyennes (éventuellement pondérées). En- fin, nous ne viserons pas une étude exhaustive don- nant toutes les démonstrations de l"IAG disponibles dans la littérature (car, par exemple, l"ouvrage [ 4] en reprend plusieurs dizaines). Nous en retiendrons certaines qui nous paraissent intéressantes ou sur- prenantes (ce qui est un critère fort subjectif) et aussi qui pourraient être présentées (avec d'éven- tuels ajustements) à des étudiants de n du secon- daire ou du début du supérieur. Pour ne pas al- longer trop notre texte, nous n'allons parfois qu'es- quisser les preuves, en insistant surtout sur les idées fondamentales des raisonnements, laissant alors le soin aux lecteurs de fournir plus de justications (des références gurant dans la bibliographie pou- vant les aider dans cette tâche). En corollaire, nous viserons un objectif plus géné- ral : rééchir sur la variété et la diversité des dé- monstrations mathématiques, ainsi que sur l'ingé- niosité des idées utilisées et l'ecacité de certains concepts théoriques. Nous traiterons d'abord le cas, évidemment le plus facile mais très riche, de deux nombres, avant d'aborder le cas général.

2. Démonstrations pour deux

nombres Il s"agit de prouver que, pour des nombres positifs arbitrairesaetb, on a a+b

2?⎷ab

Nous allons fournir diverses preuves en les ratta- chant à des domaines mathématiques qui se re- trouvent habituellement dans les programmes sco- laires, à savoir l"algèbre, la géométrie et l"analyse.

22Losanges•N?29•2015•22 -29

Inégalité arithmético-géométrique

2.1. Preuves algébriques

L"inégalitéI2peut être vue comme étant une consé- quence immédiate de l"égalité suivante, donnée par

Liouville([

9], p. 493) :

a+b

2=⎷ab+?

a-⎷b? 2 2

Nous nous proposons de détailler davantage une

autre démonstration, peut-être plus laborieuse mais relativement classique : elle nous paraît surtout in- téressante dans la mesure où elle laisse entrevoir la possibilité de dégager une manière assez naturelle pour construire une preuve mathématique en toute généralité. Il s"agit essentiellement de démontrer l"implication "H?T», où l"hypothèse considéréeHpeut se mettre sous la forme "a >0etb >0» (en admet- tant implicitement les règles usuelles de l"algèbre), tandis que la thèseTest l"inégalitéI2. Nous al- lons faire appel à cinq propositions intermédiaires,

à savoir :

•P1: "(a-b)2?0» •P2: "a2+b2-2ab?0» •P3: "a2+b2+ 2ab?4ab» •P4: "(a+b)2?4ab» •P5: "?a+b2?

2??⎷ab?

2» Les règles classiques de l"algèbre permettent aisé- ment d"écrire (les justifications étant laissées aux lecteurs) :

H?P1?P2?P3?P4?P5?T(1)

ce qu"il fallait démontrer.

Bien entendu, toutes ces implications sont " tri-

viales », mais la question qui se pose réellement est double : comment les " deviner » et pourquoi les mettre dans cet ordre qui paraîta posterioriidéal? Pour répondre à ces interrogations, reprenons ce problèmeà rebours, c"est-à-dire en partant de la thèseT. Nous allons constater que les propositions P iconsidérées apparaissent alors assez naturelle- ment; les justifications algébriques sont simples et ne seront à nouveau pas développées au sein de ce texte. Dans l"inégalité à démontrer apparaît une racine carrée. En pareille circonstance, on cherche souvent à s"en débarrasser par élévation au carré des deux membres de la formule, ce qui est ici permis; on obtient de la sorteP5. On élimine le dénomina- teur intervenant dansP5en y quadruplant les deux membres, d"oùP4. En développant le carré du pre- mier membre de cette dernière, on trouve aisément P

3. On en déduitP2en y soustrayant le produit

4abdes deux membres. Une écriture équivalente de

P

2livreP1. Cette dernière est évidente et découle

donc deH. Il suffit alors de remettre les proposi- tions dans l"ordre inverse de celui dans lequel elles ont été trouvées : on obtient de la sorte la chaîne d"implications ( 1). Comme l'illustre la petite démonstration qui vient d'être analysée, un raisonnement mathématique peut comprendre deux étapes distinctes dans son

élaboration complète.

1.Une première approche exploratoire est obliga-

toire pour construire les propositions qui intervien- dront dans la preuve : c'est une phase d'analysedu problème. Le travail demandé est alors semblable à celui d"un détective qui doit examiner en profondeur le problème posé et essayer de trouver des pistes, ou d"un médecin qui effectue un diagnostic, ou d"un garagiste qui recherche la cause d"une panne, ... Souvent, il est efficace à ce stade initial de suppo- ser le problème résolu et de raisonner à rebours, en partant de la thèse. À première vue, il ne semble pas très naturel de supposer connue la thèse que l"on souhaite démontrer. Mais, en fait, il s"agit de découvrir des propriétés intermédiaires vraies qui vont permettre de remonter de la thèse aux hypo- thèses. La conclusion n"est à ce stade que plausible et doit donc être démontrée dans les règles.

2.Ainsi est nécessaire une étape desynthèsepour

présenter correctement la preuve (selon en tout cas les normes de rigueur généralement exigées en mathématiques). La voie devinée dans l"analyse est alors exploitée et il convient ensuite de " des- cendre » logiquement (c"est-à-dire par des implica- tions) des hypothèses jusqu"à la thèse, à l"aide des propositions trouvées ci-avant. Cette phase est ter- minale, et parfois la seule visible ... et même sou- vent la seule demandéein fine. La présence conjointe de ces deux étapes d"analyse et de synthèse est assurément une particularité des mathématiques : aucune autre discipline n"y recourt de façon aussi nette. L"obligation de leur maîtrise si- multanée n"est généralement pas facile et il n"existe aucune recette aisée et universelle pour bien les pra- tiquer. Toutefois, un enseignant peut utilement li- 23

Inégalité arithmético-géométrique

vrer à ses élèves quelques conseils généraux tels que ceux-ci, inspirés par une étude de P.Lombardsur le sujet [ 10] : préciser au maximum les règles du jeu mathé-matique; inscrire l'apprentissage dans une progressionspiralaire ;

développer des apprentissages assez répétitifspour que les étudiants acquièrent de bonnes ha-bitudes et une intuition ecace. En corollaire, ilconvient d'inviter les étudiants à s'exercer autantque possible à réaliser des démonstrations adap-tées à leur niveau.

2.2. Preuves géométriques

On rencontre en géométrie des moyennes de gran- deurs, par exemple la hauteur correspondant à l"hy- poténuse d"un triangle rectangle qui est moyenne proportionnelle entre les segments qu"elle détermine sur l"hypoténuse : sa mesure est donc une moyenne géométrique de deux nombres. Par ailleurs, on y trouve aussi des inégalités, telle que l"inégalité tri- angulaire au sein d"un triangle quelconque. Il n"est dès lors guère étonnant de constater que des raisonnements géométriques peuvent démon- trer l"IAG. Nous allons ici fixer notre attention sur un type très particulier de démonstrations géomé- triques. Il s"agit depreuves sans mots. Elles ne com- prennent qu"une (ou parfois plusieurs) figure(s) ha- bilement construite(s); celle(s)-ci fourni(ssen)t des indications visuelles susceptibles de stimuler la ré- flexion mathématique, de comprendre la situation envisagée et d"apporter une réponse quasi instanta- née à la question soulevée. Nous ne nous attarderons pas sur la traduction textuelle de ces preuves, mais souhaitons néanmoins insister sur son importance : selon nous, il s"agit pour les élèves d"un exercice nécessaire, souvent difficile et très formateur.

Deux de ces preuves ont retenu notre attention.

La première se résume en une seule figure. Elle fait référence à une propriété ancienne, se trouvant déjà dansLes Élémentsd"Euclide; elle affirme que la perpendiculaire abaissée d"un point appartenant à un cercle sur un diamètre de ce cercle est moyenne proportionnelle entre les segments qu"elle détermine sur ce diamètre. En d"autres termes, la mesure dequotesdbs_dbs4.pdfusesText_7