[PDF] LES FONCTIONS DE RÉFÉRENCE - Maths & tiques



Previous PDF Next PDF







Première ES - Fonction cube

4) Courbe de la fonction cube a) Courbe : On observe sur ce dessin que la courbe est symétrique par rapport à l’origine du repère b) Explications:



I Définition et étude de la fonction cube

La fonction cube est impaire preuve : Notons g la fonction cube Soit x ∈ ℝ (car Dg=ℝ ) g(−x) = (−x)3 = −x×(−x)×(−x) = −x3 = −g(x) Ainsi g est impaire Remarque n°1 Si une fonction est impaire, alors son domaine de définition est symétrique par rapport à zéro Propriété n°2 Variations de la fonction cube La



EXERCICE 2B1 Dans chaque cas, tracer la courbe de la fonction

Notre Dame de La Merci FONCTION CUBE EXERCICES 2B CORRIGE – NOTRE DAME DE LA MERCI – Montpellier EXERCICE 2B 1 Dans chaque cas, tracer la courbe de la fonction f x x: 3 sur l’intervalle 2;2 - On rappelle que f est impaire - On donne le tableau de valeurs de f sur 2;2 : x 2 1,5 1 0,5 0,5 1 1,5 2 fx



LA FONCTION CUBE E02 - pagesperso-orangefr

LA FONCTION CUBE E02 EXERCICE N°1 On veut résoudre graphiquement l'équation 2x3−8=0 1) Tracer la courbe représentative de la fonction cube 2) Montrer que la résolution de l'équation donnée se ramène à résoudre l'équation x3=4



FONCTION CARRE FONCTION CUBE

Fonction cube Définie sur R par x H x3 Fonction impaire Si a < b, alors a3 < Fonction carré Définie sur R par x x2 Fonction paire Si alors a2 < b2 Si alors a2 > Interprétation graphique dans un repère orthogonal Fonction paire La courbe(C est symétrique par rapport à l'axe des ordonnées Fonction impaire La courbeß est symétrique par



Chapitre 5 : Fonctions de référence

2 Sens de variation de la fonction cube Propriété : La fonction cube est croissante sur ℝ Tableau de variation x – ∞ + ∞ f(x) – ∞ + ∞ 3 Représentation graphique Définition : Dans un repère orthogonal, la courbe représentative de la fonction cube est l’ensemble des points M du plan de coordonnées (x;x3) quand x décrit ℝ



FONCTIONS : COURBES REPRÉSENTATIVES

Dans un repère (O;⃗i,⃗j) , la courbe représentative d’une fonction impaire admet l’origine du repère pour centre de symétrie Remarques : - La fonction inverse, la fonction cube et les fonctions linéaires sont impaires - La fonction racine carrée et les fonctions affines (non linéaires) ne sont ni paires, ni impaires



LES FONCTIONS DE RÉFÉRENCE - Maths & tiques

- La fonction cube (représentée ci-contre) est une fonction impaire En effet : Si "($)=$;, on a : "(−$)=(−$);=−$; Donc "(−$)=−"($) Lorsqu’on trace la fonction cube, on constate que sa courbe représentative est symétrique par rapport à l’origine du repère - On peut démontrer de la même manière que la



CORRIGÉ DEVOIR SURVEILLÉ N° 3 TERMINALE STD2A

EXERCICE 1 : On considère la fonction cube f définie sur par f(x) = x3 et sa courbe représentative C dans un repère (O ; i , j ) du plan 1 La dérivée est f '(x) = 3x2 qui est positif sur donc cette fonction est croissante sur 2 Soit M un point d'abscisse x de la courbe C représentative de la fonction cube

[PDF] offre d'emploi maroc 2016

[PDF] trovit maroc

[PDF] comment calculer une moyenne de plusieurs pourcentages

[PDF] pourcentage pondéré définition

[PDF] qu'est ce qu'une moyenne pondérée

[PDF] moyenne pondéré excel

[PDF] effectif pondéré eple

[PDF] note pondérée marché public

[PDF] marge pondérée

[PDF] résultat pondéré

[PDF] tableur statistiques 4ème

[PDF] exercice corrigé boite ? moustache

[PDF] variance d'une série statistique

[PDF] tableau de signe fonction racine carré

[PDF] fonction x²

1 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

LES FONCTIONS DE RÉFÉRENCE

Tout le cours en vidéo : https://youtu.be/DUbAkwCX8O8

Partie 1 : Fonction paire, fonction impaire

1. Fonction paire

Définition : Une fonction dont la courbe est

symétrique par rapport à l'axe des ordonnées est une fonction paire.

Remarque :

Pour une fonction paire, on a :

C'est ce résultat qu'il faudra vérifier pour prouver qu'une fonction est paire. Méthode : Démontrer qu'une fonction est paire

Vidéo https://youtu.be/oheL-ZQYAy4

Démontrer que la fonction définie par =5 +3 est paire.

Correction

On a :

=5 +3=5 +3

Donc

La fonction est donc paire.

Sa représentation graphique (ci-contre) est symétrique par rapport à l'axe des ordonnées.

2. Fonction impaire

Définition : Une fonction dont la courbe est symétrique par rapport à l'origine du repère est une fonction impaire.

Remarque :

Pour une fonction impaire, on a :

C'est ce résultat qu'il faudra vérifier pour prouver qu'une fonction est impaire. 2 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Méthode : Démontrer qu'une fonction est impaire

Vidéo https://youtu.be/pG0JNDLgEDY

Démontrer que la fonction définie par -3 est impaire.

Correction

On a :

-3× +3

Et -

-3 +3

Donc

La fonction est donc impaire. Sa représentation graphique (ci-contre) est symétrique par rapport à l'origine du repère.

Partie 2 : Fonction carré

Définition : La fonction carré est la fonction définie sur ℝ par

Remarque :

Dire que la fonction carré est définie sur ℝ signifie que peut prendre n'importe quelle

valeur de ℝ.

La courbe d'équation =

de la fonction carré est appelée une parabole. Propriété : La courbe d'équation = de la fonction carré est symétrique par rapport à l'axe des ordonnées. La fonction carré est paire.

Méthode : Comparer des images

Vidéo https://youtu.be/-d3fE8d0YOc

1) Représenter la fonction carré dans un repère.

2) a) Comparer graphiquement les nombres (0,5) et (2).

b) Même question avec (-1,5) et (-1).

3) Vérifier par calcul le résultat de la question 2b.

-2 -1 0 1 2

4 1 0 1 4

3 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Correction

1)

2) a) En traçant les images de 0,5 et de 2 par la fonction , on constate que :

0,5 2 b) En traçant les images de -1,5 et de -1 par la fonction , on constate que : -1 -1,5

3) On a .

Ainsi :

-1,5 -1,5 =2,25. -1 -1 =1

On en déduit que

-1 -1,5 Résoudre une inéquation avec la fonction carré :

Vidéo https://youtu.be/Xv_mdK9kaCA

fx =x 2 4 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Partie 3 : Fonction racine carrée

Définition : La fonction racine carrée est la fonction définie sur

0;+∞

par Remarque : La fonction racine carrée n'est pas définie pour des valeurs négatives. Résoudre une inéquation avec la fonction racine carrée :

Vidéo https://youtu.be/UPI7RoS0Vhg

Partie 4 : Fonction inverse

Définition : La fonction inverse est la fonction définie sur ℝ\ 0 par

Remarques :

• Dire que la fonction inverse est définie sur ℝ\ 0 signifie que peut prendre n'importe quelle valeur de ℝ sauf 0. On dit que la fonction inverse n'est pas définie en 0. • L'ensemble ℝ\ 0 peut se noter également ]-¥;0[∪]0;+¥[ ou encore ℝ*.

La courbe d'équation =

de la fonction inverse est appelée une hyperbole. -2 -1 0,25 1 2 3 () -0,5 -1 4 1 0,5 1 3 5 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Propriété : La courbe d'équation =

de la fonction inverse est symétrique par rapport à l'origine du repère. La fonction inverse est impaire. Méthode : Calculer une image ou un antécédent par la fonction inverse

Vidéo https://youtu.be/gHDcYSHfSlk

On considère la fonction définie sur ℝ\ 0 par =2+ a) Calculer les images de 3 et de 6 par la fonction . b) Calculer l'antécédent de 7 par la fonction .

Correction

a) - Image de 3 : 3 =2+ =2+1=3.

L'image de 3 est 3.

- Image de 6 : 6 =2+ 3 6 =2+0,5=2,5

L'image de 6 est 2,5.

b) Antécédent de 7 :

On résout l'équation

=7

Soit : 2+

=7 =7-2 3 =5 3 1 5 =3× 1 5 3 5

L'antécédent de 7 est

Résoudre une inéquation avec la fonction inverse :

Vidéo https://youtu.be/V07NxCl7Eto

6 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Partie 5 : Fonction cube

1. Définition et représentation graphique

Définition : La fonction cube est la fonction définie sur ℝ par Propriété : La courbe d'équation = de la fonction cube est symétrique par rapport à l'origine du repère. La fonction cube est impaire.

2. Positions relatives des courbes d'équations : =, =

et = Propriété : Pour des valeurs positives de , on a : - Si ≥1 : La courbe d'équation = se trouve au-dessus de la courbe d'équation = qui se trouve elle-même au-dessus de la courbe d'équation =.

Démonstration au programme :

Vidéo https://youtu.be/op54acayjIQ

• 1 er cas : si ≥ : - Pour étudier les positions relatives des courbes d'équations = et = il suffit d'étudier le signe de 7 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Or,

-1 ≥0 car ≥1.

Donc, la courbe d'équation =

se trouve au-dessus de la courbe d'équation - Pour étudier les positions relatives des courbes d'équations = et il suffit d'étudier le signe de

Or,

-1 ≥0 car ≥1.

Donc la courbe d'équation =

se trouve au-dessus de la courbe d'équation - Dans ce cas, -1

Donc, la courbe d'équation =

se trouve en dessous de la courbe d'équation - Et, -1

Donc la courbe d'équation =

se trouve en dessous de la courbe d'équation

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur. www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs35.pdfusesText_40