[PDF] Chapitre 2 1 24 Produits matriciels



Previous PDF Next PDF







Chapitre 2 1 24 Produits matriciels

1 1 Produit de matrices carr´ees On a l’habitude de faire des produits de nombre; Par exemple 2×3 = 6 et on est habitu´e aux propri´et´s suivantes • il n’y a pas de diviseur de O: si un produit de deux nombres est nul c’est que l’un de ces deux nombres est nul • le produit de deux nombres est commutatif: 2×3 = 3×2



Définition et opérations sur les matrices

e) Produit de deux matrices Soient p,, trois entiers naturels non nuls Soient une matrice Aa ij, de format mn, et Bb , ij, une matrice de format np On définit la matrice Cc ij, , de format mp,, produit de la matrice Aa ij, par la matrice Bb ,B ij, que l’on note par : , 1 n j k b ¦ ATTENTION : On ne peut donc multiplier A par B



Définition et opérations sur les matrices

e) Produit de deux matrices Soientm, p et q trois entiers naturels non nuls Soient une matrice A a= (i j,) de format (m n,) et B b= (i j,)une matrice de format (n p,) On définit la matriceC c= (i j,), de format(m p,), produit de la matrice A a= (i j,)par la matrice B b= (i j,)que l’on note C AB= par : § ¤ § ¤, , , 1 1, , 1, n i j i k k





Chapitre 13 : Matrices

Le produit de deux matrices diagonales est une matrice diagonale Le produit de deux matrices triangulaires supérieures est une matrice triangulaire supérieure Démonstration Pour les matrices carrées, cela découle directement de la dé nition Pour les matrices diagonales, prenons deux matrices diagonales (de taille n) A et B Le terme d



Synthèse 3 : Les matrices

2 1 Addition de deux matrices Définition Soient deux matrices A = aij et B = bij toutes deux de dimension ()np, ; On additionne terme à terme pour obtenir : AB+= aij +bij de dimension ()np, Propriétés Soient A, B et C trois matrices de dimension (np,) et 0 la matrice (np,) dont les éléments sont tous égaux à 0



CALCUL MATRICIEL

Propriétés : Soit A, B et C trois matrices carrées de même taille a) Commutativité : A + B = B + A b) Associativité : (A + B) + C = A + (B + C) 2) Produit d'une matrice par un réel Définition : Soit A une matrice et k un nombre réel La produit de A par le réel k est la matrice, notée kA, dont les coefficients sont



Chapitre VIII Calcul matriciel

2 Produit de matrices, composition des applications linéaires Soient , , trois espaces vectoriels de dimension respective , , Soient (⃗⃗⃗ ⃗⃗⃗⃗ ), ( ⃗⃗⃗ ⃗⃗ ⃗), (⃗⃗⃗⃗ ⃗⃗⃗⃗ ) les bases respectives de , et Soient et deux applications linéaires On considère



Exo7 - Cours de mathématiques

MATRICES 2 MULTIPLICATION DE MATRICES 5 Exemple 8 A= 0 1 0 3 B = 4 1 5 4 C = 2 5 5 4 et AB = AC = 5 4 15 12 2 4 Propriétés du produit de matrices Malgré les difficultés soulevées au-dessus, le produit vérifie les propriétés suivantes :

[PDF] produit de 3 matrices

[PDF] calculatrice matrice en ligne

[PDF] produit de deux matrices de taille différentes

[PDF] nombre relatif multiplication et division

[PDF] multiplication de nombres relatifs 4ème exercices

[PDF] variable aléatoire pdf

[PDF] variable aléatoire discrète

[PDF] fonction de répartition d'une variable aléatoire discrète

[PDF] variable aléatoire exemple

[PDF] soliman et françois 1er

[PDF] fonction de distribution statistique

[PDF] produit scalaire deux vecteurs

[PDF] produit vectoriel de deux vecteurs dans le plan

[PDF] fonction de répartition d une variable aléatoire discrète

[PDF] multiplication coordonnées vecteurs

Chapitre 2

1 2.4. Produits matriciels

1.1 Produit de matrices carr´ees

On a l"habitude de faire desproduits de nombre;

Par exemple

2×3 = 6

et on est habitu´e aux propri´et´s suivantes•il n"y a pas de diviseur deO: si un produit de deux nombres est nul

c"est que l"un de ces deux nombres est nul•le produit de deux nombres est commutatif:

2×3 = 3×2

et plus generalement pour tous nombresbeta a×b=b×a On va g´en´eraliser le produit de nombre auproduit des tableaux de nombres, c"est `a-dire au produit dematrices. Si

B=?b1b2

b 3b4? ,A=?a1a2 a 3a4? sont deux matrices carr´ees de taille 2 (avec deux lignes et deux colonnes) on d´efinit b

3×a1+b4×a3b3×a2+b4×a4?

B×Aest aussi une matrice de taille 2.

Par exemple, si

B=?6 7

8 9? ,A=?1 2 3 5? alors

B×A=?6×1 + 7×3 6×2 + 7×5

8×1 + 9×3 8×2 + 9×5?

=?27 47

35 61?1

Pour les d´ebutants on dispose le calcul ainsi

1 2 3 5

6 7 27 47

8 9 35 61

Cette d´efinition peut ˆetre ´etendue `a n"importe quel matricen×no`un est un entier naturel (1,2,...,819...): `a la position d"indicei,jdeB×A on place le produit de lai-`eme ligne deBpar laj-`eme colonne deA. Le produit des matrices a des propri´et´es ´etranges par rapport au produit de nombres•il y a des diviseurs deO: si un produit de deux matrices est nul (toutes les composantes sont nulles) il peut arriver qu"aucune des deux matrices ne soit nulle.

Par exemple SiB=?1-2

-2 4? etA=?2 4 1 2? ,2 4 1 2

1-2 0 0

-2 4 0 0 autrement dit

B×A=?1×2 +-2×1 1×4 +-2×2

-2×2 + 4×1-2×4 + 4×2? =?0 0

0 0?•le produit de deux matrices n"est pas toujours commutatif:

A×B?=B×A

. Par exemple si comme tout `a l"heureA=?2 4 1 2? etB=?1-2 -2 4?1-2 -2 4

2 4-6 12

1 2-3 62

autrement dit

A×B=?2×1 + 4× -2 2× -2 + 4×4

1×1 + 2× -2 1× -2 + 2×4?

=?-6 12 -3 6? ?=B×A=?0 0 0 0? Une premi`ere application du produit de matricesOn se donne un graphe oreint´e c"est `a dire des points num´erot´es avec des fl`eches entre eux. Par exempleFigure 1:Grapheet on construit la matrice d"adjacence du graphe

•on met un 1 `a la placei,js"il y a une fl`eche partant deiet allant `aj•on met un 0 `a la placei,js"il n"y a pas de fl`eche partant deiet allant

`aj

Dans notre exemple:A=?

????0 1 1 0 0

0 0 0 1 1

0 0 0 1 0

0 0 0 0 0

0 0 0 1 0?

????3

On peut faire le produitA2=A×A0 1 1 0 0

0 0 0 1 1

0 0 0 1 0

0 0 0 0 0

0 0 0 1 0

0 1 1 0 0 0 0 0 2 1

0 0 0 1 1 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

autrement ditA 2=? ????0 0 0 2 1

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0?

La matriceA2compte le nombre de chemins de longueur 2 entreietj!! De mˆeme la matriceA3=A×A2compte le nombre de chemins de longueur 3 entreietj!!0 0 0 2 1

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 0 0 0 0 1 0

0 0 0 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 04

Autrement dit

A 3=? ????0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0?

Il y a un seul chemin de longueur 3, entre 1et 4

1.2 Composition des applications

Mais c"est pour ´etudier la composition des applications lin´eaires que la mul- tiplication des matrices va ˆetre la plus utile. On commence par rappeler le concept de la composition de deux appli- cations. La composition dey= sin(x) =f(x) avec la fonctionz= cos(y) =

g(y) est la fonctionz= cos(sin(x)) = (g◦f)(x).Figure 2:composition de fonctionsOn peut composer de la mˆeme mani`ere les applications lin´eaires. Re-

tournons `a l"exemple du d´ebut de la section 2.1. La positionx=?x1 x 2? du bateau est donn´ee par une position cod´eey=?y1 y 2? . Le code est donn´e par l"application lin´eaire y=Ax, A=?1 2 3 5? .5 On avait oubli´e un d´etail : la position du bateau est transmise `a un central `a Paris, et est cod´ee `a nouveau par l"application z=By, B=?6 7 8 9? La position du bateau re¸cue `a Paris est donn´ee par la formule z=B(Ax),

comme ´etant la composition dey=Axavecz=By.Figure 3:composition d"applications lin´eairesEst-ce que l"application compos´ee est lin´eaire, et si oui quelle est sa

matrice ? Nous allons aborder cette question cruciale : (a) en utilisant la force brutale, (b) en faisant un peu de th´eorie. (a) On ´ecrit les formules composantes par composante, (1) ?z1= 6y1+ 7y2, z

2= 8y1+ 9y2,(2)?y1=x1+ 2x2,

y

2= 3x1+ 5x2,

puis on substitue dans (1) les formules donn´ees pour lesyidans (2), ce qui donne z

1= 6(x1+ 2x2) + 7(3x1+ 5x2) = (6·1 + 7·3)x1+ (6·2 + 7·5)x2

= 27x1+ 47x2, z

2= 8(x1+ 2x2) + 9(3x1+ 5x2) = (8·1 + 9·3)x1+ (8·2 + 9·5)x2

= 35x1+ 61x2,6 ce qui montre que la compos´ee est bien lin´eaire et a pour matrice

BA=?6·1 + 7·3 6·2 + 7·5

8·1 + 9·3 8·2 + 9·5?

=?27 47

35 61?

(b) On utilise la caract´erisation des applications lin´eaires (section 2.1) pour prouver que l"applicationT(x) =B(Ax) est lin´eaire. On a :

T(v+w) =B(A(v+w)) =B(Av+Aw)

=B(Av) +B(Aw) =T(v) +T(w)

T(kv) =B(A(kv)) =B(kAv)

=kB(Av) =kT(v). Maintegnt que l"on sait queTest lin´eaire, il nous suffit pour trouver sa matrice de calculerT(e1) etT(e2), de sorte que la matrice deTest la matrice?T(e1)T(e2)?.

On a :

T(e1) =B(Ae1) =B(de la premi`ere colonne de A)

=?6 7 8 9?? 1 3? =?27 35?

T(e2) =B(Ae2) =B(de la deuxi`eme colonne de A)

=?6 7 8 9?? 2 5? =?47 61?
ce qui fait que la matrice deTest ´egale `a

T(e1)T(e2)

=?27 47

35 61?

Bien entendu, le r´esultat est le mˆeme que celui obtenu en (a) et on retrouve la matriceBA. Le produitBAest donc la matrice de l"applicationT(x) =B(Ax). Cela veut dire que ?x?IR2, T(x) =B(Ax) = (BA)x. On consid`ere maintenant le cas de matrices non n´ecessairement carr´ees. SoientBune matrice de taillen×petAune matrice de taillep×m. De nouveau, l"application compos´eez=B(Ax) est lin´eaire (la justi- fication donn´ee en b) fonctionne de la mˆeme fa¸con ici). La matrice de7

Figure 4:Vers le cas g´en´erall"applicationz=B(Ax) est leproduitde la matriceBpar la matriceA, et

est not´eBA. Cette matrice est de taillen×m. La matriceBAest celle d"une application lin´eaire de IRmdans IRnet est donc de taillen×m, et on a z=B(Ax) = (BA)x. Dans la d´efinition du produitBA, le nombre de colonnes deBest ´egal au nombre de lignes deA. Que se passe-t-il quand ces deux nombres sont diff´erents ? Supposons

queBsoit de taillen×petAde tailleq×mavecp?=q.Figure 5:Compatibilit´e colonnes/lignesDans ce cas, les applicationsz=Byety=Axne peuvent pas ˆetre

compos´ees car le co-domaine dey=Axest diff´erent du domaine dez= By. Autrement dit, la sortie de l"applicationy=Axn"est pas une entr´ee8 raisonnable pour l"applicationz=By. Dans ce cas, la produitBAn"est pas d´efini.Produit de matrices a) SoientBune matrice de taillen×petAune matrice de tailleq×m. Le produitBAest d´efini si et seulement sip=q. b) SoientBune matrice de taillen×petAune matrice de taillep×m. Alors le produitBA, de taillen×mest d´efini comme ´etant la matrice de l"application lin´eaire compos´eeT(x) =B(Ax) =BAx, pour toutx?IRm.

Dans ce cas, le produitBAest une matrice de taillen×m.Cette d´efinition ne semble pas donner de moyens concrets pour calculer

num´eriquement le produit de deux matrices. Pourtant ce moyen concret suit directement des d´efinitions.

SoientBune matrice de taillen×petAune matrice de taillep×m.´Etudions les colonnes de la matrice produitBA:

(i`emecolonne deBA) = (BA)ei =B(Aei) =B(i`emecolonne deA). En notantv1,v2,···,vmles colonnes deA, on a alors BA=B? v

1v2···vm

Bv

1Bv2···Bvm

?Les colonnes d"une matrice produit SoientBune matrice de taillen×petAune matrice de taillep×m. On notev1,v2,···,vmles colonnes deA. alors le prduitBAest d´efini par BA=B? v

1v2···vm

Bv

1Bv2···Bvm

Pour d´eterminerBAil suffit d"effectuer la multiplication deBpar chaque colonne deAet de recombiner en matrice l"ensemble des vecteurs ainsi d´etermin´es.C"est comme cela qu"on a calcul´e en (b) de l"exemple plus haut le produit

BA=?6 7

8 9?? 1 2 3 5? =?27 47

35 61?

.9 On a vu dans la premi`ere section que la multiplication des matrices est une op´eration non-commutative, ce qui n"est pas une surprise. En effet, la

composition des fonctions n"est pas une op´eration commutative.La multiplication des matrices n"est pas commutative

SoientBune matrice de taillen×petAune matrice de taillep×n. Alors ABest une matrice de taillep×petBAde taillen×n. Dans le cas o`u p=n, on peut comparer les produitsABetBA. En g´en´eral,AB?=BA. N´eanmoins, il arrive parfois queAB=BA; dans

ce cas, on dit que les matricescommutent.Il est utile d"avoir une formule analytique pour la composanteijdu

produitBA. On rappelle que BA=B? v

1v2···vm

Bv

1Bv2···Bvm

le coefficientijdu produitBAest laii`emecomposante du vecteurBvj, qui est le produit vecteur ligne vecteur colonne de laii`emeligne deBpar laji`eme colonne deA. Si on note [BA]ijle coefficient `a laii`emeligne et laji`emecolonne de la matrice produitBA, on a alors k=1b ikakj.10

Les coefficients de la matrice produit

SoientBune matrice de taillen×petAune matrice de taillep×m. Le coefficient ijdu produitBAest le produit de laii`emeligne deBpar laji`emecolonne deA.

La matrice

BA=?

11b12···b1p

b

21b22···b2p............

b i1bi2···bip............ b n1bn2···bnp? ???a

11a12···a1j···a1m

a a p1ap2···apj···apm? est la matrice de taillen×mdont le coefficient `a laii`emeligne et laji`emecolonne est donn´e par la formule k=1b ikakj.Exemple 1 6 7 8 9?? 1 2 3 5? =?6·1 + 7·3 6·2 + 7·5

8·1 + 9·3 8·2 + 9·5?

=?27 47

35 61?

Au fait, o`u a-t-on d´ej`a vu ces calculs ?

1.3 Calculs alg´ebriques avec les matrices

Nous allons d´ecrire dans ce qui suit les prinicipes du calcul alg´ebrique des matrices. •SoitAune matrice carr´ee de taillen×n, inversible. La matriceA

multipli´ee par la matriceA-1repr´esente l"application identit´e.Multiplication par l"inverse

Etant donn´eeAune matrice inversible carr´ee de taillen×n, on a AA -1=A-1A= In.•Composer l"application identit´e par une application lin´eaire des deux cot´es, laisse invariante l"application lin´eaire consid´er´ee.11

Multiplication par la matrice identit´e

Etant donn´eeAune matrice carr´ee de taillen×n, on a AIn= InA=A.•SoitAune matricen×p,Bune matricep×q,Cune matriceq×m.

Quelle est la relation entre (AB)CetA(BC) ?

Une mani`ere de r´efl´echir `a ce probl`eme (mˆeme si ce n"est pas la plus ´el´egante), consiste `a´ecrireC`a l"aide de ses vecteurs colonnes,C=?v1v2···vn?.

On a alors

(AB)C= (AB)?v1v2···vn? ?(AB)v1(AB)v2···(AB)vn?, tandis-que

A(BC) =A?Bv1Bv2···Bvn?

?A(Bv1)A(Bv2)···A(Bvn)?, Puisque (AB)vi=A(Bvi) par d´efinition du produit matriciel, on en d´eduit que (AB)C=A(BC).Associativit´e du produit matriciel

On a toujours

(AB)C=A(BC),

et on ´ecriraABCau lieu deA(BC) = (AB)C.Une d´emonstration plus conceptuelle repose sur l"associativit´e de la com-

position des applications. Les deux application lin´eaires

T(x) = ((AB)C)x, L(x) = (A(BC))x

sont identiques, car la d´efinition de la multiplication des matrices montre que

T(x) = ((AB)C)x= (AB)(Cx) =A(B(Cx)),

tandis-que

L(x) = (A(BC))x=A((BC)x)) =A(B(Cx)).12

Figure 6:Associativit´e du produit matricielLes domaines et co-domaines respectifs des applications lin´eaires d´efinies

par les matricesA,B,C,BC,AB,A(BC) et (AB)Csont d´ecrits dans la figure ci-dessous. •SoientAetBdeux matrices carr´ees de taillen×n. On supposeAet Binversibles. Est-ce que le produitBAest encore inversible ? Pour trouver la r´eciproque de l"appication lin´eaire y=BAx, on va r´esoudre l"´equation enxen deux temps. On commence par multiplier `a gauche les deux membres de cette ´equations parB-1: B -1y=B-1BAx= InAx=Ax.

On multiplie ensuite `a gauche parA-1. Il vient

A -1B-1y=A-1Ax= Inx=x.

Ce calcul montre que l"application

y=BAx est inversible et que son inverse est l"application x=A-1B-1y.Inverse d"un produit de matrices SoientAetBdeux matrices carr´ees inversibles de taillen. Alors le produit

ABest inversible et on a

(BA)-1=A-1B-1.

Attention `a l"ordre des produits !13

Pour v´erifier ce r´esultat autrement, on effectue le calcul suivant, en util- isant l"associativit´e du produit, (A-1B-1)(BA) =A-1(B-1B)A=A-1(In)A=A-1A= In, et tout marche tr`es bien. Pour mieux comprendre l"ordre des facteurs dans la formule (BA)-1= A

-1B-1, repensons `a notre histoire de bateau marseillais. Pour trouver laFigure 7:Inverse d"un produit de matricesposition effectivex`a partir du double codagez, on commence par effectuer

la transformationy=B-1zetensuitela transformationx=A-1y. Donc la r´eciproque de l"applicationz=BAxest bien l"applicationx=A-1B-1z.Un crit`ere d"inversibilit´e SoientAetBdeux matrices carr´ees inversibles de taillentelles que

BA= In.

Alors a)AetBsont toutes les deux inversibles b)A-1=BetB-1=A, c)AB= In.La d´efinition de l"inverse d"une application nous dit que lorsqueBA= In etAB= In, alorsAetBsont inversibles et inverses l"une de l"autre. Le r´esultat ci-dessus dit que l"´equationBA= In`a elle seule suffit pour assurer queAetBsoient inversibles et inverses l"une de l"autre. Pour montrer queAest inversible, il nous suffit de montrer que le syst`eme lin´eaireAx= 0 admet 0 comme unique solution (voir section 2.3). Multi-14 plions `a gauche l"´equationAx= 0 parB. On obtientBAx=B0 = 0. CommeBA= In, il en r´esulte quex= 0. DoncAest inversible. En multipliant `a droite l"´equationBA= InparA-1, il vient (BA)A-1= InA-1,c"est-`a-direB=A-1. La matriceB´etant l"inverse deAest aussi inversible, etB-1= (A-1)-1=A (r´esulte des d´efinitions). Enfin,AB=AA-1= In.? A titre d"application, consid´erons le cas 2D. SoitA=?a b c d? avec un d´eterminant non nul. On va v´erifier que

B=1ad-bc?

d-b -c a? =1det(A)? d-b -c a? =A-1. Pour cela il est suffisant de v´erifier queBA= I2. On a

BA=1ad-bc?

d-bquotesdbs_dbs35.pdfusesText_40